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Abstract 

Never-before-seen, groundbreaking ideas advance science, but so do combinations of ideas and prior 

knowledge. This paper identifies three types of scientific innovation capacities  – digging, bridging, 

and jumping– based on three kinds of knowledge combinations: repeated, predicted, and unexpected 

combinations. The capacities and combinations are assessed by using concepts associated with papers 

in the biomedical literature (1950-2023) and link prediction methods. We analyzed concepts from the 

Semantic MEDLINE Database (SemMedDB) to understand how the combination of knowledge 

within national research systems reflects distinct innovation capabilities and, in turn, impacts national 

research performance. This paper has implications for scientific innovation policy and the quantitative 

study of networked concepts in biomedicine. 

Introduction 

Scientific innovation is often driven by the recombination of existing knowledge 
(Uzzi, Mukherjee, Stringer, & Jones, 2013). While previous studies have explored 

predictable and unpredictable combinations, these studies have largely overlooked 
repeated combinations, that is, combinations that reuse established links between 
concepts. This paper introduces a unified framework that classifies biomedica l 

knowledge combinations into three types: repeated, predicted, and unexpected, 
corresponding to three forms of innovation capacity: digging, bridging, and jumping. 

Despite growing interest in how knowledge structures influence innovation, the 
relationship between different types of knowledge recombination and their specific 
roles in scientific advancement remains underexplored. In particular, few studies 

have considered all three combination types together, or examined how these 
patterns reflect and shape innovation capacity across both individual research outputs 

and national research systems. Using the large-scale semantic network SemMedDB 
and a link prediction method based on common neighbors, this study analyzed 
patterns of biomedical knowledge combinations. By examining how repeated, 
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predicted, and unexpected knowledge links are formed, the research aims to identify 
the role these combinations play in driving scientific innovation. The study also 

explores how these patterns vary across countries, providing insights into how 
different approaches to knowledge recombination reflect national differences in 
innovation capacity. This analysis will contribute to understanding how the structure 

of knowledge influences scientific progress and innovation outcomes on a global 
scale and has implications for scientific innovation policy and the quantitative study 

of networked concepts in biomedicine. 

Related Studies 

Combinatorial innovation 

Understanding innovation has always been a key issue in the science of science, 
particularly in how to measure innovation and identify the factors that influence the 

innovation process. In early studies of innovation, Schumpeter (2003) argued that 
innovation is essentially a recombination of factors of production. Later studies came 
to show that recombination can, indeed, stimulate innovation. The way in which 

different types of knowledge are combined reflects distinct innovation patterns. For 
example, Uzzi, Mukherjee, Stringer, and Jones (2013) analyzed the combinations of 

references in scientific papers from the perspectives of atypicality and 
conventionality. They suggested that a low probability of two journals being cited 
together indicates novelty, while a high probability reflects conventionality. They 

found that the high impact papers stand on the shoulders of conventional and novel 
knowledge brought together. Veugelers and Wang (2019) further showed that 
scientific papers making rare journal combinations are more likely to be cited by 

patents. This suggests a direct technological impact. Such papers are also more likely 
to be cited by other papers with high technological impact. Another perspective on 

combinatorial innovation lies in disruptiveness and consolidation. Scientific reward 
is also coupled with risk. As such, scientists must manage the trade-off between 
consolidation and disruptiveness in scientific innovation. Studies have also used a 

later-published papers’ citation behavior to a focal paper and its references as a 
strategy of evaluating the disruptiveness of a paper. For a focal paper and its 

references, there has three different citation strategies for a future paper: 1) cited the 
reference(s) of the focal paper but not the focal paper, 2) cited the focal paper and its 
reference(s) together, 3) cited the focal paper only without any of its references, and 

the innovation extent of the focal paper increase from the consolidation of tradition 
to disruptive (Funk & Owen-Smith, 2017; Wu, Wang, & Evans, 2019). Ample 

studies have analyzed innovation and novelty from the perspective of recombination 
based on network structure. Foster, Rzhetsky, and Evans (2015) analyzed how 
chemical knowledge is combined in scientific research. They identified five research 

strategies: new consolidation, new bridge, repeat consolidation, repeat bridge, and 
jump. These strategies are based on whether scientists connect two chemical entities 

within the same research area (clustering) and whether the study involves new 
chemicals. Their results showed that risky innovations – those focused on new 
knowledge or novel relationships – can lead to greater impact than stable innovations 
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built on established knowledge and relationships. Hofstra et al. (2020) introduced 
two types of novelty: conceptual novelty, which measures the number of knowledge 

concept pairs linked for the first time in a thesis abstract, and impactful novelty, 
which refers to how often these novel combinations are used in future theses. They 
found that gender and racial minorities tend to produce more innovative and 

semantically distant combinations. However, these novel contributions receive less 
adoption. The study revealed that it is more difficult for underrepresented groups to 

maintain their academic positions. 

Predicting research trends 

The rapid surge in the volume of scientific literature presents a significant challenge 

for researchers. As a result, many studies have started exploring methods for 
predicting research trends. For example, Shi, Foster, and Evans (2015) constructed 

hypergraphs to connect authors, chemicals, diseases, and methods within each paper. 
The chemicals, diseases, and methods were extracted from MeSH (Medical Subject 
Headings). The results revealed that the network distance in the biomedica l 

hypergraphs was relatively small, with most new links forming between nodes that 
were already neighbors or only two steps apart. Krenn and Zeilinger (2020) built a 

co-occurrence network from quantum physics papers and used neural networks for 
link prediction to predict research trends. Their findings revealed that emerging 
concepts and new connections can be related to key discoveries and advancements 

in quantum science. Shi and Evans (2023) found that unexpectedly novel combinations 
of article keywords (MeSH terms, PACS codes, USPC codes) and cited journals tend to 
be associated with high-impact papers, ranking in the top 10% by citation count. 

Unequal scientific development among countries/geographic regions 

In recent years, some studies have begun to analyze the national innovation capacity 

of countries. Studies demonstrate marked inequalities in national scientific 
development. For example, Miao et al. (2022) used revealed comparative advantage 
(RCA) to analyze national scientific development, treating disciplines as “products” 

of nations. They identified three discipline clusters linked to economic advantages, 
showing that while nations diversify research, global science is increasingly 

specialized. The study highlighted inequalities, especially in low-income countries, 
and called for policies to bridge disparities and build scientific capacity. Gomez, 
Herman, and Parigi (2022) proposed "the citation well" to assess citation distortion 

by comparing international citation flow and publication similarity. They used QAP 
network regression to show how core countries are over-cited while peripheral ones 

are under-cited, revealing how unequal knowledge recognition hinders nationa l 
scientific development. 

Data and Methods 

Datasets 

SemMedDB: The Semantic MEDLINE Database (Kilicoglu, Shin, Fiszman, 

Rosemblat, & Rindflesch, 2012) is a repository of semantic triples (subject CUIs – 
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predicate – object CUIs) extracted from PubMed, where CUIs refers to Concept 
Unique Identifiers in the Metathesaurus which is belong to Unified Medical 

Language System (UMLS) (Bodenreider, 2004). 
PubMed Knowledge Graph (PKG) 2.0: PKG 2.0 is a comprehensive knowledge 
graph dataset integrating over 36 million papers, 1.3 million patents, and 0.48 million 

clinical trials in biomedicine (Xu et al., 2024). The country information for each 
paper is determined based on the first affiliation of the first author. 

Link prediction 

The SemMedDB dyads (subject CUIs – object CUIs) are used to build the undirected 
and unweighted network 𝐺(𝑉, 𝐸), where 𝑉 is the set of nodes and 𝐸 is the set of links. 

Prediction network is denoted as 𝐺_𝑦 𝜖 [𝑡 − 𝑤, 𝑡), while the focal network is denoted 

as 𝐺_𝑦 =  𝑡 , where t refers to focal year and w represents the time window. The time 

window used in this paper is 5 years. Edges that will be linked together in the future 
are predicted based on the concept of common neighbors. A common neighbor is a 
node that connects to both of two other nodes, and having more of these shared 

connections means those two nodes are more likely to be linked in the future. (Lü & 
Zhou, 2011). The common neighbor edges satisfy the following conditions: 

1) Not present in the prediction network 𝐺_𝑦𝜖[𝑡 − 𝑤, 𝑡) : The edge  (𝑢, 𝑣) or 
(𝑣, 𝑢)  does not exist in prediction edges, ensuring that the selected edges are 

potential new edges. 

2) Nodes share common neighbors: There is at least one common neighbors 
between nodes u and v. 

Preliminary Results 

This section presents the main findings, illustrated through four figures. Each figure 
highlights a different aspect of the analysis, covering the distribution of edge types, 

combinations of innovation capacities, and their effects on citation and influence. 
The following results provide a detailed look at these patterns. 
Figure 1 (top) illustrates the growth in the number of papers recorded in SemMedDB, 

showing a clear upward trend from 1950 to 2023. The number of CUIs studied each 
year has also increased, although at a slower pace compared to the number of papers. 

The gray bars indicate the number of new biomedical concepts introduced each year, 
relative to all previous data. There was a sharp increase in new CUIs in 1975, 
followed by another significant surge in 2020. 

Figure 1 (bottom) shows the overlap of CUIs between papers published each year 
and those published in the previous year, the past three years, and the past five years. 

In both 1975 and 2020, the overlap decreased due to the influx of new CUIs. 
Nevertheless, the overlap with CUIs from the past five years remained high, 
consistently ranging from 80% to 90%. 

Figure 2 (top) illustrates how edges in the focal year's network are classified using a 
link prediction method. Potential links identified by the common neighbor method 

are termed “common neighbor edges.” If such edges are realized in the focal network, 
they are classified as “predicted edges.” Edges overlapping with those from previous 
networks are labeled as “repeated edges.” The focal network may also contain 
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“unexpected edges,” including those between existing nodes with no common 
neighbors, between new and existing nodes, or between two new nodes. Figure 2 

(bottom) presents the proportions of the three edge types from 2000 to 2023. 
Repeated edges dominate, accounting for about 70%, followed by predicted edges 
(20–30%), while unexpected edges remain below 10%. 

This paper focuses on the years 2000, 2010, and 2020 to examine the distribution of 
three edge types and their corresponding innovation capacities. Repeated edges 

represent digging innovation capacity, predicted edges indicate bridging capacity, 
and unexpected edges reflect jumping capacity. These capacities represent specific 
types of innovation capacity. Figure 3 presents a ternary plot (top) and a stacked bar 

chart (bottom), illustrating the portfolios of the three edge types across countries. 
The analysis shows that most countries rely heavily on repeated combinations, 

supplemented by predicted ones, while unexpected combinations are relatively rare.   
Figure 4 (top) illustrates that each paper can contain multiple edges, and the 
combinations of these edges form different edge combination types. These 

combinations include the mix of predicted and repeated edges (type id = 1), papers 
with only repeated edges (type id = 6), and those with only predicted edges (type id 

= 7). Additionally, papers can contain all three types of edges (type id = 2), 
combinations of unexpected and repeated edges (type id = 4), papers with only 
unexpected edges (type id = 5), and combinations of unexpected and predicted edges 

(type id = 3). Figure 4 (bottom) suggests that the combination of different types of 
innovation capacities leads to varying impacts on a paper's citation and influence. 
 

 

Figure 1. Summary of PMID, CUIs, and Yearly New CUIs in SemMedDB (1950-

2023). 

 



2092 

 

 

Figure 2. Edge types in concept graph: repeated, predicted, and unexpected. 

 

 

Figure 3. Distribution of Edge Types among Countries. 

 

 

Figure 4. Edge Combination Types. 
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Conclusions 

This paper explores different types of research innovation capacities by analyzing 
knowledge combinations based on biomedical entities utilizing a link prediction 
method through common neighbors. The knowledge combinations are divided into 

three types: repeated edges, predicted edges, and unexpected edges, corresponding 
to digging, bridging, and jumping innovation capacities, respectively. The advantage 

of identifying innovation capacity portfolios at both the national and paper levels is 
it reveals that scientific research relies heavily on repeated edges and predictable 
links. These predictable edges have at least one common neighbor, and their 

proximity within the network is crucial for advancing scientific development.  
Several areas remain open for improvement. First, this study focuses on dyads 

extracted from triples, overlooking the relational context between nodes. Future 
research could use triples to construct knowledge graphs and better leverage their 
richer semantic information. Second, the classification of edges could be further 

refined, for example, the unexpected edges might be distinguished based on whether 
they involve newly introduced biomedical entities. Additionally, both predicted and 

unexpected edges represent new connections. Analyzing their likelihood of being 
adopted in future research would provide valuable insights into the dynamics of 
scientific innovation and the diffusion of novel ideas. Finally, the innovation 

capacity portfolio and its correlation with scientific recognition could be more 
accurately analyzed through regression or even causal inference techniques in the 
future. 

References 

Bodenreider, O. (2004). The Unified Medical Language System (UMLS): Integrating 
biomedical terminology. Nucleic Acids Research, 32(90001), 267D – 270. 

Foster, J. G., Rzhetsky, A., & Evans, J. A. (2015). Tradition and Innovation in Scientists’ 
Research Strategies. American Sociological Review, 80(5), 875–908. SAGE 
Publications Inc. 

Funk, R. J., & Owen-Smith, J. (2017). A Dynamic Network Measure of Technological 
Change. Management Science, 63(3), 791–817. 

Gomez, C. J., Herman, A. C., & Parigi, P. (2022). Leading countries in global science 
increasingly receive more citations than other countries doing similar research. Nature 
Human Behaviour, 6(7), 919–929. Nature Publishing Group. 

Hofstra, B., Kulkarni, V. V., Munoz-Najar Galvez, S., He, B., Jurafsky, D., & McFarland, 
D. A. (2020). The Diversity–Innovation Paradox in Science. Proceedings of the National 
Academy of Sciences, 117(17), 9284–9291. Proceedings of the National Academy of 
Sciences. 

Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., & Rindflesch, T. C. (2012). 
SemMedDB: A PubMed-scale repository of biomedical semantic predications. 
Bioinformatics, 28(23), 3158–3160. 

Krenn, M., & Zeilinger, A. (2020). Predicting research trends with semantic and neural 
networks with an application in quantum physics. Proceedings of the National Academy 
of Sciences, 117(4), 1910–1916. Proceedings of the National Academy of Sciences. 



2094 

 

Lü, L., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: 
Statistical Mechanics and its Applications, 390(6), 1150–1170. 

Miao, L., Murray, D., Jung, W.-S., Larivière, V., Sugimoto, C. R., & Ahn, Y.-Y. (2022). 
The latent structure of global scientific development. Nature Human Behaviour, 6(9), 
1206–1217. Nature Publishing Group. 

Schumpeter, J., & Backhaus, U. (2003). The Theory of Economic Development. In J. 
Backhaus (Ed.), Joseph Alois Schumpeter: Entrepreneurship, Style and Vision (pp. 61–
116). Boston, MA: Springer US. Retrieved April 24, 2025, from 
https://doi.org/10.1007/0-306-48082-4_3 

Shi, F., & Evans, J. (2023). Surprising combinations of research contents and contexts are 
related to impact and emerge with scientific outsiders from distant disciplines. Nature 
Communications, 14(1), 1641. Nature Publishing Group. 

Shi, F., Foster, J. G., & Evans, J. A. (2015). Weaving the fabric of science: Dynamic network 
models of science’s unfolding structure. Social Networks, 43, 73–85. 

Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical Combinations and 
Scientific Impact. Science, 342(6157), 468–472. American Association for the 
Advancement of Science. 

Veugelers, R., & Wang, J. (2019). Scientific novelty and technological impact. Research 
Policy, 48(6), 1362–1372. 

Wu, L., Wang, D., & Evans, J. A. (2019). Large teams develop and small teams disrupt 
science and technology. Nature, 566(7744), 378–382. Nature Publishing Group. 

Xu, J., Yu, C., Xu, J., Ding, Y., Torvik, V. I., Kang, J., Sung, M., et al. (2024, October 10). 
PubMed knowledge graph 2.0: Connecting papers, patents, and clinical trials in 
biomedical science. arXiv. Retrieved January 2, 2025, from 
http://arxiv.org/abs/2410.07969 

 


