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Abstract 

Today, low-carbon, clean energies - renewables, hydrogen and nuclear - have begun to replace fossil 

fuels. This transition has been accompanied by an integration of new energy technologies in terms of 

shared use of energy, integration of multiple energy systems, and conversion between energy sources. 

Countries are actively building a low-carbon energy system with multi-energy integration to achieve 

the dual-carbon goal. This paper proposes to construct a multi-energy patent knowledge map and 

establish a domain knowledge organizing system based on fusing multiple technology classifications 

by integrating different patent technology classifying systems. Top-down and bottom-up approaches 

are adopted to build a conceptual model, and empirical research and validation are conducted in the 

field of low-carbon energy technology as an example to systematically analyze the development trend 

of low-carbon energy, convergence signals, and the potential of multi-energy convergence. The 

results are expected to provide insights into the development and practical application of multi-energy 

technologies and provide a basis for formulating relevant policies and research directions. 

Introduction 

Reducing carbon emissions to combat climate change is becoming a global 

consensus, and "dual carbon" (The goals for peak CO2 emissions and carbon 

neutrality) is an important strategic goal for most countries around the world in the 

next half century. Improving the energy supply structure is the linchpin and key to 

realizing the "dual carbon" path. In order to achieve this objective, it is imperative to 

gradually and steadily transition away from a coal-based energy structure towards a 

more robust and diverse energy portfolio. This transition requires the vigorous 

development of both renewable energy sources and safe and advanced nuclear 

energy. Additionally, it is essential to recognize the complementarity and large-scale 

potential of non-fossil energy sources, fostering a multifaceted approach to energy 

production and consumption. Presently, an array of low-carbon and clean energy 

sources is emerging. Such resources include photovoltaic, solar thermal, wind, 

nuclear, hydrogen, biomass, ocean energy, and geothermal energy. However, 

renewable energy is faced with significant challenges, including low energy density, 
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high volatility, intermittent availability, and inherent randomness. Consequently, the 

implementation of renewable energy on a large scale necessitates a systematic 

integration of diverse energy sources within the overall energy system. For instance, 

wind and light resources can serve as the primary sources of power generation and 

energy supply, whereas nuclear power, hydropower, and analogous comprehensive 

and complementary non-fossil energy sources can be utilized as a "stable power 

source," with a modicum of thermal power functioning as an emergency power 

source or a regulating power source. The development of a new type of power system 

management and operational framework will be enabled by the integration of 

renewable energy power prediction technology, advanced power system stabilization 

and control technology, and innovative power system flexible interaction 

technology. Beyond electrochemical energy storage, mechanical energy storage, 

electromagnetic energy storage, and hydrogen energy, a broad range of energy 

storage methods is considered. Consequently, the focal point of establishing a multi-

energy complementary integrated energy system is the mastery and realization of the 

core technology of multiple energy coupling and complementary (Li et al., 2022).  

Technological convergence is the process of combining existing technologies into 

hybrid technologies (Curran, Bröring and Leker, 2010). This integration is not just 

about adding technology but innovating in unprecedented ways to create new 

markets. The convergence of technologies for different new energy sources 

encompasses the joint utilization of energy resources, the integration of multiple 

energy systems, and the interconversion of energy sources. For instance, the 

technology of using nuclear energy to produce hydrogen energy has emerged as a 

promising avenue for the future, offering a carbon-free approach to hydrogen 

production. Significantly, prominent developed nations such as the United States and 

the United Kingdom have unveiled comprehensive research and development plans 

with the objective of fostering the advancement and integration of these 

technologies, such as US’s Nuclear Hydrogen R&D Plan (DOE, 2022) and the report 

Unlocking the UK’s Nuclear Hydrogen Economy to Support Net Zero (National 

Nuclear Laboratory, 2021). Hydrogen applications aim to explore flexible and 

efficient multi-energy integration solutions while enhancing the performance of 

existing fuel cell systems (Yue et al., 2021). As hydrogen energy continues to be 

developed, its applications are expected to evolve from single solutions to composite 

systems. Examples include pathways from renewable power generation to hydrogen, 

methanol, and chemical feedstocks; and systems from electricity to hydrogen and 

power for use in exploring multi-energy integration based on hydrogen energy (Fu 

et al., 2020). In this paradigm, hydrogen emerges as a pivotal energy carrier, 

facilitating flexible complementarity among diverse energy sources and promoting 

decarbonization in multiple sectors, including power, transportation, chemicals, and 

steel, through conversion to electricity, heat, gas, or as raw materials (Li, He and 

Farjam, 2023).  

Achieving carbon neutrality depends on the widespread adoption of renewable 

energy and new energy technologies. However, large-scale deployment of renewable 

energy is challenging. In particular, the synergistic and interactive use of different 

energy resources is crucial. To overcome these challenges, renewable energy sources 
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such as wind and solar must be integrated with stable energy sources such as nuclear, 

hydro, and other non-fossil fuel sources. Thermal power can be used as an emergency 

backup. It is necessary to develop a new framework for managing and operating 

power systems. To do this, it is important to understand how different new energy 

sources can be integrated. Based on the multi-energy patent knowledge graph, we 

analyze the trends, convergence signals, potential and evolution paths of multi-

energy integration using patentometrics. The research questions are as follows: What 

are the developments in the integration of different types of renewable energy 

sources? What is the potential for integrating multiple renewable energies? How 

does it work to integrate multiple renewables? What is the direction of low-carbon 

energy technology integration and technology evolution path? 

This paper explores the domain knowledge discovery of technological convergence, 

proposing a method and process for doing so based on a convergence perspective. 

The investigation and analysis of existing patent technology classification systems 

and industrial classification systems worldwide is initiated to establish a foundation 

for the subsequent analysis. The design of an automatic mapping model of multiple 

classifications employs the integration of conceptual-level and data-level 

knowledge, aiming to merge disparate patent technology classification systems and 

construct a domain knowledge organization system. The proposed methodology 

integrates a top-down (knowledge conceptualization) and bottom-up (knowledge 

refinement) approach, facilitating the identification of domain knowledge. The top-

down approach of knowledge concept refinement is integrated with the bottom-up 

approach of entity category summarization to construct the conceptual model of 

domain knowledge mapping. The constructed method is then applied to investigate 

technological innovation opportunities and evolution paths. An experimental study 

is conducted in the field of low-carbon energy technology to verify the feasibility 

and validity of the constructed methodology and process.  

This paper focuses on two main aspects of technological integration and 

development trends in major low-carbon energy technologies. Firstly, it analyses the 

technological integration trend of various low-carbon energy technologies based on 

a multi-energy patent knowledge map. Secondly, it clarifies the main technological 

direction and evolutionary path of multi-energy integration. The primary objective 

of this study is to provide a comprehensive basis for the formulation of relevant 

policies and research directives. 

Literature Review 

Renewable Energy and Patent Classification 

Major national intellectual property offices and organizations in the world have 

established patent classification systems in the field of renewable energy, covering 

the concept of "multiple energy sources" and the classification system (Error! 

Reference source not found.), including seven types of renewable energy sources, 

such as solar, wind, nuclear, hydrogen, biomass, ocean, geothermal and other 

renewable energy sources. The patent classification system related to green transition 

technology is a low and zero carbon energy-related technology classification or 
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patent search formula formed through the discussion of experts in the field, which 

facilitates the wider use of it to conduct patent information analysis.  In this context, 

WIPO has created a patent classification index for climate change mitigation 

technologies that are consistent with the existing International Patent Classification 

(IPC) system. China and Japan, which are relatively late in adopting it, are 

formulating it from an energy supply and utilization from industry and electric power 

generation perspective. The newly established Y02E (low-carbon energy generation, 

transmission and distribution technologies) in the Joint Patent Classification System 

for European-American cooperation. The diversification of classification systems 

has two notable effects. On the one hand, it provides richer paths for accessing 

information. On the other hand, it significantly increases the uncertainty factor. In 

cases where multiple knowledge sources correspond to the same technical feature, 

each source may adopt a different technical classification and attribute framework. 

This often leads to fragmentation of knowledge organization. As a result, issues such 

as knowledge redundancy, semantic ambiguity, and inconsistent quality may arise. 

These problems exacerbate the uncertainty in the knowledge acquisition process. 

They also challenge the reliability and confidence level of the knowledge. In this 

context, the effective integration and fusion of multi-source knowledge have become 

essential strategies for enhancing the accuracy of knowledge discovery.  

The central objective of this section of the study is to employ conceptual-level 

knowledge fusion techniques, with the aim of integrating the same knowledge 

source—which utilizes different classification and attribute systems—into a unified 

global framework. This process focuses on solving key issues such as conflict 

detection, entity disambiguation, entity alignment, and collaborative reasoning that 

arise when different classification systems point to the same knowledge content. It 

also lays a solid foundation for the seamless integration of multiple technology 

classification systems. 

The paper systematically summarizes and reorganizes seven categories of low-

carbon energy, including major technology categories, industry divisions, and 

domain-specific classifications, which are then further linked to the corresponding 

entries in the International Patent Classification (IPC) and the Cooperative Patent 

Classification (CPC) systems. This process of summarization and reorganization 

serves to enhance the coherence and consistency of knowledge representation. 

Moreover, it provides a clearer and more comprehensive perspective for the 

subsequent analysis of technology integration and innovation. 
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Table 1. Patent Classification of Multiple Energy Sources. 

Organization Patent Classification Different Definition 

CNIPA 

(CNIPA, 

2023) 

Patent Classification 

System for Green and 

Low Carbon 

Technologies 

Fossil Energy Carbon Reduction; 

Energy Conservation and Recycling; 

Clean Energy; Energy Storage; CCUS 

WIPO 

(WIPO, 2010) 

WIPO IPC Green 

Inventory 

Nuclear power generation, alternative 

energy (biofuels, fuel cells, hydrogen, 

wind, solar, geothermal, waste heat, 

etc.) 

USPTO 

EPO 

(USPTO; 

EPO, 2010) 

CPC classification 

Y02E (low-carbon technologies related 

to energy production, transmission and 

distribution) Y02E10/1 (geothermal), 

Y02E10/2 (hydro), Y02E10/3 (ocean), 

Y02E10/4 (solar thermal), Y02E10/5 

(photovoltaic), Y02E10/7 (wind), 

Y02E50/1 (biofuels), Y02E50/3 (waste 

fuels), Y02E30/1 (spent biofuels), 

Y02E30/1 (nuclear fusion), Y02E30/3 

and Y02E30/4 (nuclear fission) 

USPTO 

(USPTO, 

2009) 

EST Concordance 

Alternative energy: biomass, fuel cells, 

geothermal energy, hydroelectric 

energy, solar energy, wind energy 

JPO 

(JPO, 2022) 

Green Transformation 

Technologies Inventory 

Energy Supply (gxA): Photovoltaic 

Power Generation, Solar Thermal 

Power Generation, Wind Power 

Generation, Geothermal Power 

Generation, Hydropower, Ocean 

Energy Power Generation, Biomass, 

Nuclear Power Generation, Fuel Cells, 

Hydrogen Technology, Ammonia 

Technology 

 

Low-carbon technologies and Patent Analysis 

Patent bibliometrics is an important method for studying the innovative output of 

low-carbon technologies. Analyzing low-carbon energy patent data can provide 

insights into the development trends and trajectories of low-carbon technologies. 

Oltra and Saint Jean (2009) argues that patents are a useful means of measuring green 

energy technologies. They can analyze invention activities in specific technological 

fields, the international dissemination of technology, the research and technological 

capabilities of enterprises, and the sources of knowledge of innovative institutions, 

as well as technological spillovers. Albino et al. (2014) analyzed the development 
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and impact of low-carbon energy technologies, examining nuclear power production, 

alternative energy production, and energy conservation patents in The IPC Green 

Inventory, and found that the United States is the main source of innovative low-

carbon energy technologies, while Japan leads in solar energy and low-energy 

lighting. Although China, Russia, and other countries are increasingly using low-

carbon energy technologies, the level of technological innovation in this area remains 

low. Leu, Wu and Lin (2012) analyzed the status of technology development in the 

field of biofuel and biohydrogen energy on the basis of patentometrics, and found 

that the U.S. is leading the development of biofuel-related energy, and the high 

number of cited patents suggests that biofuel production technology must give 

priority to low energy demand. Liu et al. (2011) classified patents related to 

photovoltaic technology based on keyword co-occurrence and analyzed the growth 

trajectory of five groups of photovoltaic technologies. Chen, Chen and Lee, (2011) 

conducted a bibliometric and patent analysis to study the technological evolution and 

patent strategy of hydrogen energy and fuel cells. Subtil Lacerda (2019) examines 

the influence of scientific knowledge on the evolution of wind turbine technology 

trajectories through bibliometric analysis and finds a strong correlation between the 

development of scientific knowledge and the technological trajectories of wind 

turbines. Similarly, Hötte, Pichler and Lafond ( 2021) analyzed the relationship 

between low-carbon energy technologies and scientific knowledge. By analyzing a 

corpus of patents covering six renewable energy technologies from 1970 to 2019, 

Jiang et al.(2022) sheds light on the life cycle of these technologies, the technological 

landscape, the potential markets, and the competitive landscape in key 

countries/regions involved. The current study is mainly a descriptive analysis of 

LCE, which is limited by data availability and data processing capabilities. Second, 

the static patent classification system on which LCE is based is not perfect. It does 

not analyze trends in multi-energy convergence. The boundaries between fields are 

not clear and may evolve with dynamic cross-field convergence. 

Second, technology convergence research based on patent information has become 

the main method and hot direction of technology convergence research. In addition, 

there are related studies that use data from papers, standards, and Wikipedia. For 

measuring technology convergence, Herfindahl Index, patent cross-impact analysis, 

social network analysis, and time window analysis are applied(Jeon and Suh, 2019; 

Lee, Kogler and Lee, 2019). In predicting technology convergence trends, methods 

such as link prediction based on technology convergence networks(Park and Yoon, 

2018), neural network method based on technology convergence matrix (Kim and 

Lee, 2017), and time series prediction method based on time series of technology 

convergence relationships(Lee, Park and Kang, 2018) have been applied. Xue and 

Shao (2024) identifies technological evolution paths in the field of hydrogen energy 

using patent text mining. The analysis shows a good convergence in the evolution of 

hydrogen energy technologies, focusing mainly on hydrogen storage materials, 

hydrogen fuel cell vehicles, and green hydrogen production. Existing research shows 

that technology convergence positively affects technology value and innovation 

activity. Most empirical studies, however, are highly generalizable across domains. 

Few studies analyze the dynamics of technology convergence for multiple domains 
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and across domains. At present, there are fewer studies on technology fusion analysis 

for patent data that target multi-domain and domain-wide technology fusion 

dynamics. This study attempts to fill this research gap by constructing a multi-energy 

fusion patent knowledge map. 

The Knowledge Graph (KG) and Knowledge Discovery 

The Knowledge Graph is a structured Semantic Web knowledge base that describes 

concepts and how they relate to each other in a visual way by mapping abstract data 

and knowledge to graphical elements(Dessì et al., 2021). It complements human-

computer interaction by helping users effectively perceive and analyze data and 

knowledge while exploring connections to extend existing knowledge(Xiao, Li and 

Thürer, 2023). It can mine and analyze knowledge and its interrelationships and are 

important tools for paying attention to the frontiers of science and technology and 

knowledge management. The existing studies mainly focus on the concept, 

development history, structure, application and so on aspects of knowledge 

maps(Nguyen and Chowdhury, 2013; Balaid et al., 2016). Based on co-word 

analysis, social network analysis and strategy analysis, Pino‐ Díaz et al., 

(2012)proposed the method of constructing techno-scientific network strategic 

knowledge map, which can visualize strategic knowledge, keywords, subnetwork 

proximity and other contents. Su and Lee, (2010)proposed a three-dimensional 

network and a two-dimensional map based on the co-occurrence of keywords, which 

can describe the forward-looking knowledge structure of the latest technology in a 

quantitative and visual way. The concept of a knowledge graph remains undefined, 

and research in this area is still in its early stages. Most researchers are now building 

knowledge graphs as navigational aids (network analysis, visualization, or text 

mining, etc.), which play an important role in organizing knowledge acquisition, 

connecting experts, discovering knowledge, and facilitating mobility (Lee and Fink, 

2013). Key challenges include domain knowledge organization, dynamic/tacit 

knowledge representation/extraction, and cross-domain knowledge mapping (Suresh 

and Egbu, 2004). Zhou et al. (2024) maps knowledge on hydrogen fuel cell 

technology on the basis of bibliometrics and IPC co-classification analysis. 

Karlapalem (2021) believes that Knowledge Discovery in Database is an important 

process for identifying valid, novel, potentially useful and ultimately understandable 

patterns in data, which refers to the extraction of implicit, unknown and potentially 

useful information from data (Fayyad, 2001), and the term refers to research results, 

technologies and tools that extract useful information from a large amount of 

data(Agrawal and Shafer, 1996). The extracted information includes concepts, 

relationships between concepts, classifications, decision rules and other 

information(Vickery, 1997). Knowledge discovery emphasizes that knowledge is the 

product of data-driven discovery process, a common point of different research 

fields, focusing on data analysis and knowledge extraction from different 

perspectives, such as database, statistics, mathematics, logic or artificial intelligence 

(Mariscal, Marbán and Fernández, 2010). Due to the complexity of knowledge and 

the Fusibility of technologies, it is very important to adopt appropriate methods and 

perspectives for knowledge discovery and analysis. In recent years, various 
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knowledge discovery methods have been rapidly developed and widely applied in 

various industries, such as cancer diagnosis, biological classification of river water 

quality, population analysis, quality control, disaster risk assessment, global climate 

change modeling, time series pattern analysis, clinical medicine (Sebastian and 

Then, 2011; Anguera et al., 2016), topology optimization (Yamasaki, Yaji and 

Fujita, 2019), etc. Roscher et al.(2020) analyzed the application of explainable 

machine learning in natural science, holding that its main goal is to obtain new 

scientific insights and discoveries from observation or simulation data, and that the 

prerequisite for obtaining scientific results is domain knowledge, and defined the 

concepts of transparency, interpretability, and explainability. 

Existing knowledge discovery techniques, research methods, perspectives, and 

outcomes are increasingly exhibiting a trend toward diversification. To accurately 

describe and reveal the knowledge structure and evolution characteristics, and to 

avoid discovering local and one-sided knowledge, it is necessary to integrate 

heterogeneous data from multiple sources. Furthermore, the knowledge organization 

system must be improved to maximize the discovery of the domain knowledge 

structure and the dynamic evolution characteristics from the perspective of data and 

technology convergence. 

Methodology 

The process consists of three main steps. First, we develop a system to organize 

domain knowledge using a technology classification framework derived from 

various sources. Next, we construct a knowledge graph. Finally, we leverage a multi-

energy knowledge graph to conduct empirical research on technology convergence. 

Domain knowledge under a multi-source technology classification system 

This study employs conceptual-level knowledge convergence, a process aimed at 

integrating knowledge sources from various classification and attribute systems into 

a unified global framework. The theoretical underpinnings of knowledge 

classification and fusion of multi-feature representations (see Fig. 1) serve as the 

foundation. Initially, the knowledge system of the domain is extracted. Then, through 

the direct merging of the extracted data, the representation of "concept, attribute and 

attribute value" is formed (e.g., wind energy, IPC/CPC). 

Subsequently, the entity references are categorized based on the established 

classification and fusion rules. The specific principles that have been adopted are as 

follows: 

First, classification principles: (1) concept mutual exclusion constraint, i.e., the more 

intersected, the more compatible the concepts; (2) hierarchical concept constraint, 

i.e., an entity does not belong to a certain concept, and it does not belong to any sub-

concepts. 

Second, fusion principles: (1) concept fusion, which refers to synonyms or similar 

concepts; (2) attribute alignment, i.e., the degree of overlap of entity-attribute values 

corresponding to attributes; and (3) attribute value alignment, i.e., deletion of 

duplicates and elimination of erroneous knowledge. 
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Figure 1. Theoretical Foundations of Knowledge Classification and Fusion Based on 

Multi-Feature Representation. 

 

The theoretical foundation outline above serves as the basis for the development of 

the automatic mapping model of classes for multiple classifications (Fig.2). This 

model specifically incorporates two levels of patent classification feature fusion 

methods. 

(1) Concept layer convergence 

The first layer involves the convergence of text-based and structure-based 

approaches. The text-based method entails matching of the ontologies through the 

textual description information, the extraction of the descriptions from two 

ontologies, and the similarity between them. The structure-based method utilizes 

structural information between the ontology concepts when the textual information 

is inadequate for determining the matching relationship between two ontologies. 

Initially, the text in "concept, attribute and attribute value" is extracted, including the 

text of technical categories, explanations, and IPC classification descriptions. 

Subsequently, the extracted text information is used to map into various vectors that 

can be corresponded to, in the form of, e.g. wind̅̅ ̅̅ ̅̅ ̅ = (𝑤𝑖,1, 𝑤𝑖,2, 𝑤𝑖,3, ⋯ , 𝑤𝑖,𝑛)  , 

which is the set of vectors. Thirdly, the semantic similarity between the vectors is 

calculated by using the cosine similarity, the Euclidean distance, and other metrics. 

The calculation of semantic similarity between the vectors is performed using cosine 

similarity, Euclidean distance, and other metrics. 

(2) Data layer convergence 

An instance-based approach is adopted in this context. The instances of ontology 

concepts are utilized as the basis for similarity measurement when calculating 

ontology similarity. The number of identical instances of two ontologies is compared 

to calculate the similarity between ontologies. The greater the similarity, the closely 

the two ontologies align. This method is highly reliable. 

The specific operational procedure is outlined as follows: Initially, the IPC 

classification number and attribute value corresponding to the ontology are 

extracted. Subsequently, under specific conditions, the probability model is 

employed to ascertain the matching relationship between the entities in question, i.e., 
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the IPC classification number and other entities (single patents) with an IPC 

relationship. 

 

 

Figure 2. The multi-energy classification mapping model. 

 

Multi-energy Knowledge Graph 

The conceptual model of Multi-energy Knowledge Graph is constructed by 

combining top-down and bottom-up approaches (Fig.3). Firstly, top-down approach 

utilizes the knowledge organization system to gradually refine the concepts from the 

top level down to form a tree-structured mapping model. Secondly, bottom-up 

approach uses the patent data, which has been summarized by the related entity 

categories, to form a broad category scope layer from multiple fields of patents 

upward, thereby forming a general patent knowledge graph. The final step involves 

the combination of the two approaches to form a generic patent knowledge mapping 

by means of attribute extraction, attribute alignment, relationship construction, 

concept hierarchy construction and entity classification, etc., to obtain data and 

realize the construction of domain-specific knowledge graph.  

 

 

Figure 3. Method for constructing multi-energy knowledge graph. 
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Data search strategy 

The data source of this study is the emission peak and carbon neutrality patent 

information platform (www.cpnp.ac.cn) built by the Chinese Academy of Sciences 

based on the web, which is a one-stop and patent big data information service 

platform, and contains a large amount of emission peak and carbon neutrality patent 

information worldwide. This platform has strong professional relevance and supports 

the comprehensive collection of patent data relevant to various energy sources, 

which is highly consistent with the research topic. In this paper, we searched for 

priority patents related to low-carbon zero-carbon energy, energy storage and multi-

energy integration technologies to ensure the timeliness and novelty of the data. The 

search results involved a total of 7 technology branches, and obtained more than 1.5 

million pieces of relevant patent data (Table 2). The search was conducted in April 

2022. 

 
Table 1. Patent search strategy and data proportion. 

Fields Secondary Fields 
The Number of 

Patents 
Proportion (%) 

Low-carbon and 

zero-carbon 

energy 

(1,041,553) 

Nuclear power 

and non-electric 

use of nuclear 

energy 

131,903 12.6% 

Renewable energy 

(Solar, wind 

energy, biomass 

energy, 

geothermal, ocean 

energy) 

716,720 68.5% 

Hydrogen energy 

and fuel cell 
198,266 18.9% 

Energy storage 

and multi-energy 

integration 

Heat/cold storage 55,065 10.2% 

Physical power 

storage 
44,051 8.2% 

Chemical power 

storage 
416,783 77.5% 

New power 

systems based on 

renewable energy 

21,605 4.0% 

 

Technical comparison indicators  

We combines the characteristics of different technical fields and introduces the 

following two technical comparison indicators: 

 



642 

 

(1) Technology comparative advantage 

Low-carbon clean energy technologies can be categorized into the following: 

renewable energy, hydrogen and fuel cells, nuclear power, and non-electric 

utilization of nuclear power. Energy storage and multi-energy integration 

technologies can be categorized into the following: thermal energy storage, new 

power systems based on renewable energy, chemical power storage, and physical 

power storage. The patent technology dominance of country j in the ith technology 

field (second level) can be calculated by formula (1-1) using the internationally 

recognized multi-disciplinary measurement index "technology comparative 

advantage" (RTA). 

𝑅𝑇𝐴 =  
𝑃𝑖𝑗 ∑ 𝑃𝑖𝑗𝑖⁄

∑ 𝑃𝑗 𝑖𝑗
∑ 𝑃𝑖𝑗𝑖⁄

                                                     (1-1) 

In equation, Pij denotes the number of patents of the jth country in the ith technology 

field. 

(2) Technological relevance 

The integration of wind energy with other energy technologies has become 

increasingly prominent. The coefficient of technological relevance is employed to 

assess the technological relevance of the seven energy sources. Compared with 

indicators such as Jaccard Index or Salton Cosine, which can only capture the 

differences between technologies, the correlation coefficient can capture the distance 

between two technologies and is more conducive to evaluating the closeness of the 

relationship between technologies. A larger value indicates a closer relationship 

between the two technologies. The calculation method is delineated in equation (1-2): 

𝑆𝑖𝑗 =
∑ 𝐶𝑖𝑛𝐶𝑗𝑛

𝑘
𝑛=1

√∑ 𝐶𝑖𝑛2
𝑘
𝑛=1 √∑ 𝐶𝑗𝑛2

𝑘
𝑛=1

                                              (1-2) 

In equation (1-2), Sij denotes the correlation coefficient between technologies i and 

j. If Sij is equivalent to 1 on the diagonal of the correlation matrix, it signifies that 

the co-occurrence distribution of technologies i and j in patents is entirely consistent, 

indicating a complete integration of each technology with itself. Conversely, if Sij is 

0, it indicates that the distribution of patents for technologies i and j is entirely 

disjoint. K represents the number of core technologies, which is to say the width of 

the integration of the technologies is represented by Cjn, which denotes the number 

of instances in which technologies j and n are present together in a single patent. 

Empirical Study of Convergence application of Multi-energy Knowledge Graph 

The domain of low and zero-carbon energy technologies has been selected as a 

subject of in-depth experimental research. This decision stems from two primary 

considerations. Firstly, green and low-carbon technologies are garnering increased 

global attention, prompting prominent scientific and technological powerhouses, as 

well as regional organizations, to dedicate considerable resources to the promotion 

of research and development in the field of green technologies. Notably, the 
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development of patent-technology classification systems, a crucial component in the 

patent information search strategy, is experiencing robust growth. This system is 

instrumental in facilitating a comprehensive and systematic understanding of the 

patent landscape, thereby providing a solid knowledge framework and conceptual 

foundation for the execution of this research method. 

Secondly, international science and technology and industrial communities have 

urgent strategic needs for low-carbon energy and multi-energy fusion technologies. 

An in-depth investigation of this technological innovation trend in the field can track 

the development of innovation and application among low-carbon energy supply 

technologies. It can also quickly capture the characteristics of technology 

convergence and its path evolution trends. This is imperative for the development of 

a low-carbon energy system integrating various energy sources and for providing a 

scientific foundation for related innovation decisions. 

Knowledge Organization for Multi-energy Classification 

In view of the major strategy of low-carbon energy and the demand for multi-energy 

integration, the concept of "multi-energy" and its classification system have been 

investigated. A comparative analysis demonstrates that the World Intellectual 

Property Organization (WIPO) and the United States Patent and Trademark Office 

(USPTO) have pioneered the Green Patent Technology Classification System, with 

the classification primarily devised from an alternative energy perspective. In 

contrast, the Joint Patent Classification System of Europe and the United States has 

recently augmented its classification with the addition of category Y02E (low-carbon 

technologies associated with energy generation, transmission, and distribution). 

Meanwhile, China and Japan have demonstrated a bias towards the perspectives of 

energy supply and utilization in the new energy industry and the electric power 

production industry (Guo R, et al., 2020). 

The present study, which is based on the patent technology classification systems 

mentioned above, draws upon the technical characteristics of the respective fields. It 

identifies and explores the knowledge concept space of seven types of low-carbon 

clean energy, such as solar, wind, nuclear, hydrogen, biomass, ocean, and geothermal 

energy, and conducts research on the construction of a low-carbon energy knowledge 

organization system within the multifaceted technology classification system. 

For each of the seven types of energy, the main technology classifications, industries, 

and industry domains are thoroughly examined, with the corresponding IPC and CPC 

classification numbers documented. The attribute characteristics of these energies, 

as classified in different systems, are unified to facilitate the realization of conceptual 

and data level fusion, resulting in a comprehensive global system. 

The knowledge organization process for wind energy is exemplified by its 

integration of a technology classification system that delineates wind energy and its 

associated technology branches. Initially, the technology classification system of 

wind energy is merged, providing a comprehensive overview of wind energy and its 
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associated technology branches. From a textual feature perspective, the first level 

encompasses all wind energy (F03D), adhering to the principle of majority same, 

ensuring a precise alignment between the two-ontology information. Subsequently, 

from a structural feature perspective, the subordinate technology branches, such as 

F03D1 with F03D as the parent node have a higher probability of being matched; 

third, H02J3/38 has a matching relationship with multiple entities belonging to the 

same class of H02J (wind power generation). 

Knowledge Graph in the field of low-carbon and zero-carbon 

Based on a multi-energy knowledge organization system, a multi-energy knowledge 

graph is built by collecting data, extracting attributes, aligning, building 

relationships, building concept hierarchies, and classifying entities. As shown in 

Fig.4 and Fig.5, entity, relationship and attribute knowledge are extracted from 

patent fields, and structured knowledge within the knowledge graph is linked and 

enhanced using knowledge graph construction techniques like entity linking and 

entity complementation. Finally, the knowledge graph in the field of low-carbon 

energy technologies will be formed and stored in the Neo4j. 

 

 

Figure 4. Example of Knowledge Graph Entity Relationships in the Low-Zero 

Carbon Domain. 
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Figure 5. Event Example for Multi-energy Knowledge Graph. 

 

Evolutionary Analysis of Technology Convergence Paths in the Low Carbon Energy 

Field 

This study employs a knowledge discovery method based on the integration of 

multiple low-carbon and clean energy technology classifications; a methodology 

previously outlined in prior research. This paper utilizes patent analysis and 

application to examine the current state of knowledge reserves in the field, with the 

aim of identifying opportunities for technological innovation and evolutionary paths 

in the field of low-carbon and clean energy. 

Seven low-carbon clean energy technology convergence trends 

(1) The first signal of convergence is an inevitable product of the development of the 

multi-energy technology——from wind and ocean power to nuclear, hydrogen and 

solar PV. As it shown in Fig.6, in the 19th and early 20th centuries, hydroelectricity 

and wind power accounted for the largest share at over 60%. After the World War II 

there was a shift to nuclear fission, with nuclear power accounting for up to 46% of 

the total, and after 1975 a shift to solar PV and wind power, which together accounted 

for almost 45% of the total in the same period. The analysis revealed a general 

upward trend in renewable energy-related patents, with a marked increase occurring 

subsequent to 1980 and accelerated growth following 2005. The study also noted 

considerable variability in the development of distinct energy technologies, with 

wind energy patents dating back to 1907 and biomass-related patents emerging only 

after 1970. The patents demonstrating the most significant growth and proliferation 

are those associated with wind and solar energy. In contrast, patents related to ocean 

water energy, hydrogen energy, biomass energy, and nuclear energy have 

experienced a notable surge in innovation between 2011 and 2015, followed by a 

subsequent decline in recent years. 
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Figure 6. Trends in Multiple Energy Patent Applications (1890-2020). 

 

(2) A second signal of technology convergence is the increasing share of cited papers 

in the total number of patents (Fig.7). The first patent literature on renewable energy 

technologies emerged in the early 20th century, yet the majority of citations to 

relevant scientific papers within this patent literature materialized subsequent to the 

1970s. This observation suggests a growing reliance on scientific research with the 

progression of low-carbon clean energy technologies, particularly within the domain 

of biomass energy. Along with the steady rise in the number of patents filed for these 

seven low-carbon clean energy technologies, there has been an analogous increase 

in the proportion of relevant patents citing relevant papers. In recent years, biomass 

energy has become the most science-dependent energy source due to its close links 

to biochemical research, with 33-57% of cited papers. Nuclear, hydrogen and 

photovoltaics are also more science-dependent than other technologies (especially 

hydro and wind). Science-intensive technologies tend to be more dependent on basic 

science than on applied technologies across a wide range of energy sectors. A close 

examination of the seven low-carbon clean energy technologies reveals that the 

development of biomass energy technology is most dependent on basic scientific 

research. This is due to the fact that the technology is closely related to biochemical 

research. Consequently, this feature is the most distinctive. In contrast, the remaining 

energy technologies, particularly hydropower and wind energy, exhibit a stronger 

correlation with applied research. 
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Figure 7. Trends in the percentage of patents citing paper (1970-2020). 

 

(3) A third signal of technological convergence is that the convergence of multiple 

energy sources is based on the same or similar scientific principles. Statistics on the 

number and type of IPC top 4 for the full set of patents for various LCE show that 

221 sub-categories are involved in the field, of which solar PV has the highest 

number of IPC categories involved with 81.The basis for the multi-energy integration 

of the various energy is the physics of nuclear energy integration based on plasma 

(G), ocean and geothermal energy based on mechanical engineering (F), biofuels and 

hydrogen fuel cells based on chemistry (C), and solar PV and wind energy based on 

photoelectric effects (F&H). Tables 3 and 4 provide mutual corroboration of the 

basis for the convergence of multiple energy technologies in terms of quantity and 

type, respectively. 

 
Table 2. Number of IPC Top 4-Digit Classification Based on Seven Energy Sources. 

Energies G B C E F H 

Nuclear 215 98 269 2 84 62 

Wind 584 602 176 466 7687 4418 

Solar 632 557 706 420 4827 4607 

Biomass 3 297 1799 2 183 164 

Ocean 19 301 83 124 4329 249 

Geothermal 9 16 20 81 847 66 

Hydrogen 178 598 2640 31 902 737 
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Table 3. Types of IPC Top 4-Digit Classification Based on Seven Energy Sources. 

Energies G B C E F H Y02 

Nuclear 12 2 1 2 1 0 3 

Wind 0 6 1 2 15 8 6 

Solar 1 1 2 2 25 33 17 

Biomass 1 2 24 1 5 1 0 

Ocean 0 2 1 4 9 1 2 

Geothermal 0 0 0 2 12 2 1 

Hydrogen 0 1 0 2 1 1 4 

 

(4) The RTA was used to compare and analyze the patent-protected technologies of 

major global science and technology powers (China, Japan, the United States, 

Germany, and South Korea). These countries were selected based on their status in 

two key fields: low-carbon and zero-carbon energy, as well as the storage and 

convergence of multiple energy sources. 

(5) The calculation results reveal that China possesses a substantial relative 

advantage in the domain of low-carbon clean energy (Fig.8), with its renewable 

energy patented technology. Japan's strengths lie primarily in nuclear power and non-

electric utilization technology, while the United States leads in nuclear energy, 

hydrogen energy, and fuel cells. In the domain of energy storage and multi-energy 

integration (Fig.9), China has a substantial advantage in heat and cold storage, new 

power systems based on renewable energy, and chemical storage. In contrast, Japan 

and the United States prioritize chemical storage, while Germany focuses on physical 

storage. 

(6) The world's major technological powers each possess a distinct set of advantages 

in terms of energy sources. The RTA indicator was utilized to calculate the relative 

advantages of seven types of patented technologies within the five major science and 

technology powerhouses. The results of this analysis indicate that: China has three 

types of energy with relative advantages in patented technologies (RTA ≥ 0.9), in 

the order of solar energy, wind energy, and geothermal energy. The United States 

has six types of advantageous energy technologies, in the order of biomass, 

hydrogen, nuclear energy, solar energy, geothermal energy, and wind energy, in 

which the biomass, hydrogen, nuclear energy, and patent advantages are also ahead 

of the other four countries. South Korea has four types of advantageous energy 

technologies, in the order of ocean water, solar energy, wind energy, and geothermal 

energy. The United States boasts six predominant energy technologies: biomass, 

hydrogen, nuclear, solar, geothermal, and wind. Among these, biomass, hydrogen, 

and nuclear lead the other four countries in terms of patent superiority. 
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Figure 8. RTA of Low-carbon energy supply in key countries. 

 

 

Figure 9. RTA of energy storage in key countries. 

 

Multi-energy convergence potential detection 

A patent-based technology convergence analysis has been conducted on seven 

significant domains of low-carbon clean energy technology: nuclear power and non-

electric utilization of nuclear power, wind energy, solar energy, biomass energy, 

geothermal energy, ocean energy, hydrogen energy, and fuel cells. This analysis 

integrates the frequency of co-occurrence of technologies and the degree of 

technology relevance to identify key technologies, the degree of technology 
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convergence within the field, and the future development trends in the domain of 

low-carbon clean energy. 

(1) The number of co-occurrences of the seven energy patents is 3.44% (Table 5). 

The seven energy sources have few connections. There is not enough technological 

correlation between two of the seven energy sources, but wind energy shows a weak 

correlation with geothermal energy, ocean energy, solar energy, geothermal energy 

with solar energy, and hydrogen energy with biomass energy. It is more obvious 

when wind is combined with other energy sources. 

(2) By measuring the correlation coefficient Sij for n core technologies, a new n*n 

diagonal matrix can be obtained to demonstrate the proximity of the integration 

between core technologies (Table 5). 

As illustrated in Table 5, the low-carbon clean energy technology combinations that 

demonstrate a certain degree of correlation between the patented technologies 

include wind energy-geothermal energy, wind energy-ocean energy, wind energy-

solar energy, geothermal energy-solar energy, and hydrogen energy-biomass energy. 

When these findings are considered in conjunction with the scale of the number of 

patents, they serve to further substantiate the significance of wind energy in the 

development of multi-energy technology integration. 

(3) The study takes the knowledge map of wind energy integration with other 

energies as an example (Fig.10). Wind energy, based on the photovoltaic effect, has 

a high degree of fusion with solar energy, which is mainly used for wind power 

generation and propulsion, as well as combinations with geothermal energy, ocean 

energy and nuclear energy. One of the most prominent directions of integration is 

the generation and propulsion of wind energy, which is based on the generation of 

power by mechanical means. Since the regions that are rich in wind energy are also 

likely to be rich in solar and geothermal energy, the possibility of their fusion 

association is higher. There is also integration with nuclear power. 

 

Table 4. The co-occurrence of seven types of energy patents. 
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Figure 10. The case of Knowledge Graphs of wind and other energy convergence. 

 

Technology Convergence Discovery and Evolution Analysis 

Nuclear energy is a reliable, carbon-free energy source that generates a stable, 

continuous supply of electricity. In order to further analyse the evolutionary path of 

technological convergence, the convergence in the field of nuclear energy is selected 

as case study. The study is divided into five time periods: 1996-2000, 2001-2005, 

2006-2010, 2011-2015, and 2016-2021. The co-occurrence network of convergence 

technologies in each period was extracted (Fig.11), the co-occurrence network of 

countries and technological field was analysed, and the development path of fusion 

technology was analysed. As shown in Figure 27, the number of patent applications 

in the field of nuclear energy has increased steadily with small fluctuations, peaking 

in 2004, 2012, and 2018, respectively. The number of IPC classification numbers 

related to nuclear fusion technology has been steadily increasing, indicating the 

continuous absorption of new technologies. Overall, the technology network was 

relatively isolated in its early years (1996-2000). However, as the 21st century 

progressed, the technical and functional network was gradually improved, and fusion 

trends began to emerge. The United States and Japan are leaders. In the last five years 

(2016-2021), China has joined in, forming a triad. 

The United States and Japan have a clear first-mover advantage in the development 

of patented technology convergence in the field of nuclear energy. Since 2011, China 

has witnessed a substantial surge in the number of patents related to nuclear energy 

technology, which have begun to occupy a central position in the evolutionary 

network of fusion technology. In the past five years (2016-2021), China, the United 

States, and Japan have further solidified their dominance in this field. When 

considering China's historical context of related planning, the role of policy as an 

incentive for innovation becomes evident. Since 2005, China's "Eleventh Five-Year 

Plan" has promoted the development of nuclear power policy from "moderate 
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development" to "active development." In 2006, China initiated the process of third-

generation nuclear power autonomy. In 2011, China introduced the "Medium- and 

Long-Term Development Plan for Nuclear Power (2011-2020)," which adjusted the 

development goal to 58 million kilowatts of installed nuclear power in operation by 

2020, with 30 million kilowatts of nuclear power under construction. 

As illustrated in Fig. 11, the progression of patented nuclear energy technology 

fusion follows a technological trajectory that primarily involves the conversion of 

energy between nuclear, thermal, mechanical, and electrical domains. In terms of 

technology categories, batteries and their manufacture (H01M and its subordinate 

branches), chemical or physical methods and devices, such as catalysis, colloid 

chemistry (B01J and its subordinate branches), have been almost throughout the 

entire process of nuclear energy fusion technology evolution, suggesting that they 

are the basic and key technologies in the field of nuclear energy technology fusion. 

Metal compounds (C01G), electrolytic processes to produce compounds or non-

metals (C25B), alloys (C22C), engines (F03G), ion implantation or chemical vapor 

deposition (C23C), and so forth, have played a significant and innovative role in the 

fusion of nuclear energy and other energy sources at various points in time, 

propelling technological turnover. This demonstrates that nuclear energy's function 

extends beyond mere electricity supply, encompassing the production of hydrogen, 

district heating, desalination, and numerous other nuclear technologies. It 

demonstrates that nuclear energy's function extends beyond the provision of 

electricity, encompassing diverse non-electricity-related applications such as 

hydrogen production, district heating, and seawater desalination. 

 

 

Figure 11. The Nuclear Energy Convergence Pathways. 
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In essence, the primary characteristics of the development of nuclear energy 

technology integration and innovation path performance can be delineated as 

follows: In the initial phase, the emphasis was placed on the augmentation of primary 

energy, with nuclear energy serving as a reliable power source. The technological 

innovation agenda centered on nuclear energy and renewable energy coupling 

technologies and facilities, including, but not limited to, small nuclear reactors and 

centralized solar thermal power plant technology. In recent times, the emphasis has 

shifted towards enhancing energy efficiency, with a particular focus on nuclear 

energy and renewable energy synergistic smart systems. Technological innovation 

has centered on the power system as the core, leveraging smart grids, with nuclear 

energy and renewable energy serving as the primary sources, complemented by an 

appropriate amount of hydropower and thermal power. This approach aims to 

facilitate the complementarity of cold, heat, gas, water, electricity, and other energy 

sources, thereby enhancing the efficiency of energy utilization. (iii) The present 

focus is on the expansion of the application of multi-energy fusion technology, with 

attention given to technological innovations related to nuclear energy for hydrogen 

production, such as large-scale nuclear energy for hydrogen production and 

secondary energy production. 

Discussion & Conclusions 

This paper proposes a domain knowledge discovery method based on convergence 

perspective, which can reveal domain knowledge reserve dynamics, technology 

opportunity insight and domain convergence technology evolution path. The method 

can help researchers, enterprises and government departments to better understand 

the technological opportunities, key technologies and future development trends of 

field convergence, which is important for promoting innovation and development of 

related fields. 

The Multi-Energy Convergence Patent Knowledge Graph (MEPKG) is a domain 

knowledge database that extracts the latest advances in domain knowledge and 

provides information on the potential for technology convergence and development 

trajectories. It also improves user search experience, search engines, and knowledge 

discovery. In this paper, based on the research issues of multi-energy convergence 

(research progress, convergence potentials, and convergence paths), we try to use the 

knowledge graph of multi-energy convergence patents to study the trends, 

convergence signals, potentials, and development paths of multi-energy integration. 

The empirical analysis reveals that the signals of technology convergence in the 

multi-energy field are relatively weak. At present, the technological links among the 

seven energy sources are not very significant, but the integration of wind energy with 

other energy sources is more obvious. Due to the fusion effect of multiple energy 

sources between scientific principles, its potential for future multi-energy 

convergence is huge. In terms of technology pathways, the focus is on multi-energy 
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power generation and thermal efficiency utilization. Patent-based multi-energy 

knowledge mapping helps to detect weak signals of multi-energy technology 

convergence. The study of technology pathways for their convergence is currently 

dominated by multi-energy power generation and thermal efficiency utilization. It 

can also reveal the evolutionary path of convergence of individual energy sources. 

 

 

Figure 12. Multi-energy convergence directions. 

 

However, the limitation of this paper is that the current research method is still based 

on structured data of patents. It is based on the fusion of the patent classification 

numbers, which belongs to a relatively elementary stage of the attempt. In the future, 

structured data and unstructured heterogeneous data will be further explored to 

further improve the research and application of knowledge graph on patent 

technology analysis. The knowledge mapping technology has great expansion 

potential in multi-domain and cross-domain to further improve data availability and 

data processing capability. Second, the boundaries between multi-domain and cross-

domain are evolving with the dynamic integration of cross-domain, and future 

attention will be paid to the detection of opportunities for the integration of emerging 

technologies. In the future, we will continue to refine the method, expand the 

application areas, and improve the accuracy and efficiency of domain knowledge 

discovery. At the same time, we hope that the method will provide more valuable 

support and assistance to research and development in related fields.  

There are several areas that require further exploration through research. Firstly, the 

automatic mapping model of multivariate technology classification categories 

necessitates the refinement of algorithms related to matching rules. Secondly, the 

indicators and algorithms for technology convergence discovery and path evolution 

analysis require enhancement, and the correlation with the knowledge graph must be 

strengthened. In future research, the application of the knowledge map of low-carbon 
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and clean energy can be further strengthened, and the algorithms related to 

technology fusion path and evolution analysis can be improved through the use of 

algorithms related to the graph database. 
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