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Abstract 

Main Path Analysis (MPA) is commonly applied to citation networks constructed from papers or 

patents within a research or technological field to reveal representative knowledge-diffusion 

trajectories for that field. These trajectories, known as Main Paths (MPs), reflect the overall 

knowledge development and evolution within the field. 

Rather than examining field-level trajectories, this study introduces a novel approach to explore 

individual scientists’ research trajectories within the field. These individual-level trajectories enable 

analysts to trace the lineage of a scientist’s work, understand its origins, and uncover its influence on 

subsequent research. Additionally, these individual-level trajectories can be contrasted with field-

level trajectories to examine their interactions, providing further insights into a scientist’s 

contributions relative to the field’s mainstream development. 

This approach relies on a previously overlooked path search algorithm in MPA, referred to as key-

node search, to generate MPs that capture distinct knowledge flows centered around a scientist’s 

works. A case study based on patents in the field of Evolutionary Computation, using an official 

artificial intelligence patent dataset, demonstrates both a macro-view and a micro-view of the 

proposed individual-level MPs. 

Introduction 

Hummon and Doreian (1989) developed the so-called Main Path Analysis (MPA), 

which aims to uncover “the mainstream of literature of a clearly delineated area of 

scientific research” from the citation network of a specific research area. Since its 

inception, MPA has become a widely recognized method, leading to a proliferation 

of studies employing it. Its popularity can be attributed to its conceptual simplicity, 

further bolstered by its availability in the popular network analysis tool Pajek 

(Batagelj & Mrvar, 1998; De Nooy, Mrvar, & Batagelj, 2018). 

MPA is typically employed to analyze networks of mutually citing documents, such 

as scientific papers or patent publications associated with a specific field of study. In 

such networks, documents are represented as nodes, while their citations are 

represented as arcs, denoting pathways for the flow of knowledge from cited 

documents to citing ones. By applying MPA, one or more series of connected arcs—

referred to as main paths (MPs)—are derived from the network and identified as 

representative trajectories of knowledge development within the field. 

Rather than focusing solely on the MPs for a field, or field-level MPs, this study 

explores whether the same approach can be applied to individual researchers or 
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scientists within the field. Specifically, it investigates whether the most 

representative trajectories passing through the papers or patents associated with a 

researcher or scientist can be identified as individual-level MPs. To the best of the 

authors’ knowledge, no prior study has explored this endeavor of uncovering 

individual-level trajectories. Therefore, this study aims to fill that gap. 

Uncovering individual-level MPs offers several benefits. First, these MPs can 

illuminate how a researcher’s or scientist’s works evolve, particularly how they are 

influenced by or contribute to other works in the field. Second, these MPs can be 

compared against those of other researchers or scientists to explore how their 

trajectories interrelate. Their respective MPs may run parallel, diverge, or converge 

at certain points, revealing overlaps or intersections in their research efforts. Third, 

these MPs can also be contrasted with field-level MPs to examine their interactions, 

offering deeper insights into a researcher’s or scientist’s contributions relative to the 

field’s mainstream development.  

Literature Review 

Overview of MPA 

To derive MPs from a citation network, MPA primarily involves two key 

components. First, weights are assigned to the network’s arcs to reflect their 

significance in knowledge diffusion (Hummon & Doreian, 1989). Once the arc 

weights are assigned, MPA performs a path search on the weighted network to 

identify chains of connected arcs that extend from the network’s sources to its sinks, 

which are then identified as MPs. 

There are various weight assignment and path search algorithms in MPA. The most 

widely used weight assignment algorithms—namely SPC, SPLC, and SPNP—are 

collectively known as SPX algorithms. For an in-depth description of these 

algorithms, refer to Kuan (2020). 

The most popular path search algorithms, such as those available in Pajek, can be 

broadly categorized into global and local searches, each with a number of similar 

variants listed in Table 1. The approach introduced in this study is based on a path 

search algorithm called the key-node search (Kuan, 2024; Kuan & Liao, 2024), 

which also has global and local variants (more details are provided later). 
 

Table 1. Categorization of common path search algorithms. 

Category Variants Related parameters 

Global searches Global standard   

Global key-route arcs having the topmost N weights as key routes 

Global key-node a designated set of key nodes 

Local searches Local forward a tolerance value between 0 and 1 

Local backward a tolerance value between 0 and 1 

Local key-route  1) a tolerance value between 0 and 1 

2) arcs having the topmost N weights as key routes 

Local key-node 1) a tolerance value between 0 and 1 

2) a designated set of key nodes 
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Global searches identify MPs by selecting paths having the highest path weights (i.e., 

the sum of all arc weights along a path) between two sets of nodes. In contrast, local 

searches construct the MPs incrementally, progressing step by step from one set of 

nodes to another. 

More specifically, global standard (GS) search (Liu & Lu, 2012) selects MPs from 

the paths between the network’s sources and sinks. Local forward (LF) search 

(Hummon & Doreian, 1989) begins at the sources and progressively selects the 

highest weighted outgoing arcs, moving to subsequent nodes until a sink is reached. 

Conversely, local backward (LB) search (Hummon & Doreian, 1989) starts at the 

sinks and traces backward through the highest weighted incident arcs until a source 

is reached. When conducting local search, a tolerance value can be set to include arcs 

within a specified range of the highest weight for tracing (De Nooy, Mrvar, & 

Batagelj, 2018). For instance, a local search with the tolerance value of 0.10 would 

trace incident or outgoing arcs with weights that are at least 90% of the highest 

weight among them. 

Key-route searches (Liu & Lu, 2012) develop MPs by starting with a set of highest-

weighted arcs, referred to as key routes. For a given key route (i, j), the global key-

route (GKR) search performs the GS searches between the sources and the arc’s start 

node i, and between the arc’s end nodes j and the sinks, to identify one or more global 

paths preceding and succeeding the key route (i, j), respectively. These global paths 

are then concatenated with the key route (i, j) to form its GKR MPs. Similarly, the 

local key-route (LKR) search employs LB and LF searches, instead of GS searches, 

to derive the preceding and succeeding paths for the key route (i, j). 

Key-route searches involve a parameter N, which specifies arcs with the topmost N 

weights to be used as key routes. For instance, a key-route 1 search initiates MP 

development from the arc with the highest weight, while a key-route 10 search 

includes arcs with weights up to the 10th highest. In key-route N searches, the number 

of key routes may exceed N if weights are tied. 

Key individuals along the MPs 

There is a wealth of research involving the application of MPA to uncover a field’s 

field-level MPs. Among these studies, some have also focused on identifying 

significant individuals, especially firms, within the field. These studies generally 

follow a common approach: they first derive the field-level MPs and then identify 

individuals whose works appear on these MPs. Such individuals are considered key 

contributors, as their works are integral to the most representative trajectories of the 

field’s evolution. 

Recent studies provide several examples. For instance, Su, Chen, Chang, and Lai 

(2019) employed MPA to trace the dominant knowledge flow in the field of 

blockchain technology and identified owners of the patents on the MPs as key players 

for the field. The study then analyzed the patent families of these key players to 

investigate their strategic intent in managing their patent portfolios. 

Cho, Liu, and Ho (2021) applied MPA to patents related to autonomous driving to 

uncover the technology development trajectory for the field. The study identified 

assignees whose patents appeared on the trajectory as key players. Additionally, 
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based on the different phases along the development trajectory and the associated 

key assignees within each phase, the study categorized these key players into groups 

such as “technology developers,” “technology integrators,” and “technology 

implementers.” A similar methodology was adopted by Chen and Cho (2023) to 

analyze trends and identify key players in the field of Low Earth Orbit (LEO) satellite 

technology using patents. 

Watanabe and Takagi (2021) used MPA to examine how technology has evolved 

within the field of computer graphic processing systems. The study developed MPs 

for the field at 5-year intervals and observed the appearance and disappearance of 

firms owning patents on the MPs over time. The authors noted that these patterns of 

firm appearances and disappearances align with the historical evolution of the field. 

The above studies have several limitations. Firstly, as only individuals with works 

along the MPs are considered, those without any works on the MPs are overlooked. 

Additionally, field-level MPs may fail to capture other relevant or even key 

individuals, as Verspagen (2007) empirically demonstrated that MPA is highly 

selective at the firm level, with many active individuals in the field not present on 

the MPs. Furthermore, the identified individuals may have additional works beyond 

those located on the field-level MPs, which may be overloooked under this approach. 

MPs from specific nodes 

The key-node search algorithms employed in this study is similar to the key-route 

algorithms, with the key distinction being that they begin MP development from a 

set of analyst-designated key nodes, rather than a number of top-weighted key routes 

determined for the analyst. More details on this approach will be provided in the 

Methodology section. 

This study has identified several prior works with methodologies akin to the 

approach adopted here. Unlike traditional MPA, which typically develops field-level 

MPs by searching the citation network from sources to sinks, or vice versa (except 

for the key-route searches described earlier), these studies first analytically identified 

a number of key documents. They then developed field-level MPs starting from the 

nodes of these key documents. 

Park and Magee (2017, 2019) introduced a modified MPA that develops field-level 

MPs from designated nodes. The authors first identified patents with high knowledge 

persistence—a measure of the extent to which knowledge remains in the patents or 

contributes to later patents based on their structural positions in the patent citation 

network. They then developed field-level MPs exclusively from the nodes of these 

so-called high-persistence patents (HPPs), tracing forward to the sinks and backward 

to the sources. Feng and Magee (2020) followed a similar approach in analyzing 

patents from four domains of electric vehicles. They derived MPs for each domain 

from a number of HPPs and identified the assignees of these HPPs as key players for 

each domain. 

Unlike the above studies, which analytically selected key nodes from the citation 

network, this study manually designates nodes representing the works of a specific 

researcher or scientist as key nodes. The resulting key-node MPs are therefore 

referred to as the researcher’s or scientist’s individual-level MPs. As these MPs are 
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constructed from the field’s citation network, rather than using the researcher’s or 

scientist’s works in isolation, they reflect how their works evolve within the broader 

context of the field to which they belong. 

In addition to the above-mentioned studies, several works have also explored path 

development from designated nodes. Ho, Saw, Lu, and Liu (2014) developed a 

method called “branch paths” to address the risk that minor technologies may be 

overshadowed by more prominent technologies and thus omitted from the field-level 

MPs. This method identifies a set of documents related to these minor technologies 

and traces paths from these designated documents both forward and backward until 

they encounter a node on the field-level MPs. Liu, Lu, and Ho (2019) referred to this 

method as the “designated-document approach” and suggested that it could reveal 

the relationship between these designated documents and the field-level MPs. 

While these works also develop paths from specific nodes, their aim is to supplement 

field-level MPs rather than derive MPs from the perspective of individual researchers 

or scientists. 

Methodology 

Key-node search 

As mentioned earlier, the key-node search includes global and local variants, similar 

to the global key-route (GKR) and local key-route (LKR) searches, as summarized 

in Table 1. The primary distinction is that key-node MPs are derived from specific 

nodes that are manually designated as key nodes by the analyst. In contrast, in the 

key-route search, the analyst cannot specify individual arcs as key routes but can 

only control the parameter N. 

As illustrated in Figure 1, for a designated key node k (the white node), the key-node 

search identifies the representative preceding and succeeding paths (depicted in solid 

lines) between the sources (dark nodes to the left) and the key node k, and between 

k and the sinks (dark nodes to the right). These paths may pass through intermediate 

nodes (gray nodes). In global key-node (GKN) search, the representative preceding 

and succeeding paths are derived using global standard (GS) search, whereas in the 

local key-node (LKN) search, they are determined using local backward (LB) and 

local forward (LF) searches, respectively. These representative preceding and 

succeeding paths are then cascaded to form the MPs for the key node k. Finally, the 

MPs for all key nodes are aggregated to form the overall key-node MPs. 

 

k

 

Figure 1. MPs by Key-node search. 
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In other words, the key-node search constructs MPs by initiating the development of 

significant paths both preceding and succeeding the designated key nodes. By 

assigning nodes that represent a researcher’s or scientist’s works as key nodes, the 

resulting key-node—or researcher’s or scientist’s individual-level—MPs reveal, on 

one hand, the works within the broader field that have most influenced the 

researcher’s or scientist’s works and, on the other hand, the representative 

subsequent developments stemming from the researcher’s or scientist’s works, also 

within the broader context of the field. 

The individual-level MPs, therefore, offer deeper insights into the research evolution 

of researchers or scientists than simply aligning their works chronologically. 

Furthermore, individual-level MPs facilitate a more nuanced understanding of the 

interrelationships among the researcher’s or scientist’s works. For instance, some 

works may appear on separate paths within the individual-level MPs, suggesting that 

they stem from distinct developmental trajectories in the researcher’s or scientist’s 

intellectual endeavors. Conversely, instances where multiple works appear on the 

same path indicate a continuation of research efforts, signifying progressive 

knowledge expansion within a single thematic or methodological direction. 

Applications of key-node search 

Like the common path searches mentioned earlier, the key-node search described 

above is also available in Pajek, making it readily accessible to analysts. However, 

perhaps due to its introduction only after 2018—where it is obscurely labeled as 

“through vertices in cluster”—this path search has seen little application in the 

literature. To promote awareness of this method and to better reflect its 

characteristics and similarity to the key-route search, the term “key-node search” has 

been coined. 

Despite its simplicity, the key-node search has the potential to enhance MPA in ways 

that other common path searches do not. Based on the few related studies available, 

the following are two examples of its potential applications. 

One challenge in MPA is the lack of a quantitative measure to evaluate how well 

MPs accurately capture and reflect overall knowledge development within a field. 

To address this, Kuan and Liao (2024) proposed that the representativeness of MPs 

is limited to the portions of the network that are reachable from or to the MPs, 

referring to these portions as the MPs' coverage. The study further suggested that the 

proportion of documents falling within the MPs' coverage can serve as a quantitative 

measure of their representativeness. 

To uncover MPs’ coverage, the study applied the LKN search with a tolerance value 

of 1, using all nodes on the MPs as key nodes. This approach allowed the LKN search 

to trace all incident and outgoing arcs for each MP node, thereby encompassing the 

portions of the network that were reachable from or to the MP nodes. When a 

significant portion of the network fell outside the MPs’ coverage, reflecting a low 

representativeness for the MPs, the study proposed a method to identify auxiliary 

MPs from this out-of-coverage portion. This portion was also determined using the 

LKN search with a tolerance value of 1, where the key nodes included those lying 

outside the MPs’ coverage. 
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Kuan (2024) observed that MPA analysts often possess domain knowledge about the 

field under analysis, including seminal works crucial to its development. Rather than 

leaving this knowledge unused in the MPA process or restricting its use solely to 

document collection or validation of obtained MPs, the study proposed manually 

incorporating these seminal works into MPA using the key-node search to generate 

MPs that capture a distinct knowledge flow centered around these key documents. 

The study further suggested observing key-document MPs alongside field-level MPs 

to simultaneously examine the focused knowledge flow through key documents and 

the overall knowledge flow of the field. This concurrent observation allows for an 

analysis of their interactions, providing additional insights into the field’s 

development. To facilitate this process, the study proposed generating key-document 

and field-level MPs automatically and simultaneously, both using key-node searches. 

While the key-node search may seem like just one of many path search options in 

MPA, Kuan (2024) formally verified that the field-level MPs generated by the 

popular path search algorithms listed in Table 1 can all be reproduced using the key-

node search with appropriately selected key nodes—except for key-route MPs, 

which are subject to certain preconditions. This finding establishes the key-node 

search as a uniquely versatile method among the algorithms listed in Table 1. 

Case study 

Data set 

To demonstrate the real-world application of the proposed approach, this study 

conducts a case study using the publicly available Artificial Intelligence (AI) Patent 

Dataset provided by the United States Patent and Trademark Office (USPTO). This 

dataset comprises 13,244,037 U.S. patent documents, including utility patents and 

pre-grant publications (PGPubs), spanning the years 1976 to 2020. 

Each patent document is classified by the USPTO using a machine learning approach 

to predict its relevance to one of eight AI technology fields: machine learning (ML), 

natural language processing (NLP), computer vision (CV), speech (S), knowledge 

processing (KP), AI hardware (AIH), evolutionary computation (EC), and planning 

and control (P&C) (Giczy, Pairolero, & Toole, 2022). 

This study selects patent documents predicted to belong to the field of Evolutionary 

Computation (EC), resulting in 48,999 patent documents covering 36,560 inventions. 

EC is chosen for its versatility, which makes it a foundational approach in modern 

AI research and applications, offering potentially diverse and complex knowledge 

flows for analysis. 

EC draws inspiration from biological evolution to solve optimization and search 

problems. It encompasses a family of techniques, including genetic algorithms, 

genetic programming (applying a genetic algorithm to a population of computer 

programs), and differential evolution (generating new candidate solutions by 

combining the differences between randomly selected individuals in a population of 

candidate solutions), which simulate natural selection, mutation, crossover, and 

survival of the fittest to iteratively refine solutions (Bäck, Hammel, & Schwefel, 
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1997). EC is widely applied in machine learning, robotics, optimization, and 

complex system design due to its ability to efficiently explore large search spaces 

and adapt to dynamic environments. 

As for the researcher or scientist whose research trajectory is to be observed, this 

study selects John R. Koza, a pioneer in the EC field (Mitchell & Taylor, 1999). He 

is known for his work in genetic programming, particularly in automated program 

generation, where computer programs are evolved to solve complex tasks. Mr. Koza 

is listed as the inventor on 14 U.S. patents, 12 of which are predicted to be EC-related 

in the AI Patent Dataset. This study considers these 12 patents to constitute Mr. 

Koza’s body of research for analysis. These patents are listed in Table 2, arranged in 

ascending order of their application dates. 

 
Table 2. Patents with John R. Koza as the sole inventor or one of the inventors. 

 

As mentioned earlier, aligning Mr. Koza’s patents as listed in Table 2 provides little 

insight into the evolution of his EC research. While a subjective examination of their 

# App. no. App. date Pub. no. Pub. date Title 

1 7196973 19880520 4935877 19900619 Non-linear genetic algorithms for solving 

problems 

2 7584259 19900918 5148513 19920915 Non-linear genetic process for use with 

plural co-evolving populations 

3 7787748 19911105 5136686 19920804 Non-linear genetic algorithms for solving 

problems by finding a fit composition of 

functions 

4 7881507 19920511 5343554 19940830 Non-linear genetic process for data 

encoding and for solving problems using 

automatically defined functions 

5 7899627 19920616 5390282 19950214 Process for problem solving using 

spontaneously emergent self-replicating 

and self-improving entities 

6 8286134 19940804 5742738 19980421 Simultaneous evolution of the 

architecture of a multi-part program to 

solve a problem using architecture 

altering operations 

7 8603648 19960220 5867397 19990202 Method and apparatus for automated 

design of complex structures using 

genetic programming 

8 8813894 19970307 6058385 20000502 Simultaneous evolution of the 

architecture of a multi-part program while 

solving a problem using architecture 

altering operations 

9 9290521 19990412 6532453 20030311 Genetic programming problem solver 

with automatically defined stores loops 

and recursions 

10 9336373 19990617 6424959 20020723 Method and apparatus for automatic 

synthesis, placement and routing of 

complex structures 

11 9393863 19990910 6564194 20030513 Method and apparatus for automatic 

synthesis controllers 

12 10355443 20030130 7117186 20061003 Method and apparatus for automatic 

synthesis of controllers 
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document contents and prosecution histories may reveal how some patents are 

related to or directly derived from others, this alone does not objectively determine 

whether they follow a continuous line of research or originate from separate 

endeavors—let alone their relationship with other EC patents. 

EC citation network 

This study constructs a citation network using EC patent documents and their 

backward citations. A few key points about this construction are as follows: 

1. Node Representation: The nodes in the network are identified by their patent 

application numbers. This arrangement aggregates citations for an invention’s 

patent and its corresponding pre-grant publications (PGPubs), providing a more 

comprehensive view of its citation relationships (Kuan, Chen, & Huang, 2020). 

2. Citation Ordering: All citations are filtered so that the cited patent documents 

are always those filed earlier than their citing counterparts. This prevents cycles 

in the network and ensures that knowledge flows consistently from earlier-filed 

patents to those filed later. 

3. Network Closure: The network is closed, meaning that only patent documents 

classified as EC are included—both cited and citing—by filtering out those 

outside the EC patent dataset. While this restriction is not mandatory, it is 

applied for simplicity in analysis. 

4. Removal of Anomalies: Loops and duplicate arcs are removed from the citation 

network. These anomalies result from the aggregation mentioned in (1). For 

example, a loop occurs when a patent self-cites its own PGPubs, while duplicate 

arcs appear when a later patent simultaneously cites an earlier patent and its 

PGPub. 

After applying the aforementioned processing steps, the final EC citation network 

consists of 46,261 arcs and 19,836 nodes, representing approximately 54% of the 

36,560 EC inventions. In other words, roughly half of the EC inventions lack mutual 

citations and are therefore not part of the citation network, suggesting potential 

imprecision in the AI Patent Dataset. However, this study verifies that all 12 of Mr. 

Koza’s EC patents are included in the citation network. 

The citation network is distributed across 1,178 components (i.e., isolated sub-

networks). The largest component includes 16,757 nodes, accounting for 

approximately 85% of the total nodes, whereas all other components are significantly 

smaller (the second-largest component contains only 27 nodes). The MPs produced 

in subsequent analyses will be derived entirely from this largest component, as MPs 

do not extend across disconnected components. 

A macro-view based on a researcher’s or scientist’ entire set of works 

To derive Mr. Koza’s research trajectory, this study assigns SPNP weights to the arcs 

of the citation network (Kuan, 2020). Subsequently, the 12 nodes, each 

corresponding to one of Mr. Koza’s patents listed in Table 2, are gathered into a 

Pajek cluster, and the GKN and LKN searches are applied to generate Mr. Koza’s 

individual-level GKN and LKN MPs. For simplicity, the LKN search is conducted 
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with a tolerance value of zero, meaning that only arcs with the topmost weight are 

traced.  

The resulting GKN MPs include 54 nodes, while the LKN MPs include 69 nodes. 

Although the two sets of MPs differ—each containing some nodes absent from the 

other—both reflect a common theme in the evolution of Mr. Koza’s research, as their 

interconnected structures share a consistent framework (as described below). 

Additionally, 50 out of the 54 nodes in the GKN MPs are also present in the LKN 

MPs.  Therefore, for brevity, only the GKN MPs are presented in Figure 2. 

 

 

Figure 2. Mr. Koza’s individual-level MPs by GKN search. 

 

In Figure 2, the nodes are labeled with their corresponding patent application 

numbers. The black nodes represent Mr. Koza’s 12 patents, with their sequence 

numbers from Table 2 in parentheses attached to their labels. The four grey nodes 

denote those that are not present in the LKN MPs. 

At first glance, Figure 2 reveals that, as an early pioneer in the EC field, Mr. Koza’s 

works are concentrated in the early (or left) half of the trajectory. All of his works 

can be traced back to a common origin. Then, Mr. Koza’s works initiate two distinct 

strands of subsequent development in the later (or right) half of the trajectory. 

As mentioned earlier, the LKN MPs reveal an identical framework to that depicted 

in Figure 2, except that they include an additional source, an additional sink, and 

several extra nodes and branches in the denser left portion of the trajectory. 

A closer examination of the patents in Figure 2 reveals that the early half of Mr. 

Koza’s individual-level MPs follows a development trajectory centered on the 

evolution of computer programs based on genetic algorithms. Interestingly, in the 

later half, the trajectory transitions toward neural network-based product design and 

the training of machine learning models. 
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The common origin of all 12 of Mr. Koza’s patents involves two prior patents, both 

of which are based on genetic algorithms:  

1. Application No. 6619349 (corresponding to Patent No. 4697242) lists John 

Holland as one of the inventors, who is recognized as the father of genetic 

algorithms (Bäck, Hammel, & Schwefel, 1997). This patent describes an 

adaptive computing system consisting of a population of classifiers. The system 

employs a genetic algorithm to generate new classifiers, replacing less effective 

ones and enabling continuous learning and improvement. 

2. Application No. 6899518 (corresponding to Patent No. 4821333) describes a 

method for image recognition, particularly focusing on applying mutation and 

crossover mechanisms to evolve sets of structuring elements within an image. 

The goal is to identify an optimal set of structuring elements that can effectively 

distinguish between image categories. 

For brevity, this study examines four patents, selecting two from each strand of 

subsequent developments. In the lower right part of Figure 2, the knowledge flow 

from Mr. Koza’s genetic programming work shifts into the training of machine 

learning models: 

1. Application No. 15263654 (corresponding to Patent No. 10387801) focuses on 

training and assessing a machine-learned model to refine a large collection of 

documents (e.g., web pages from a search engine) into a shorter ordered list 

(akin to a partial order). The ranking is derived from multiple parameters that 

reflect relevance, similar to fitness values in evolutionary algorithms.  

2. Application No. 16354332 (corresponding to Patent No. 11494691) also focuses 

on training and assessing a machine learning model but specifically optimizes 

the training process. This more advanced patent introduces a technique that 

utilizes the idle time while the machine learning model awaits actual outcomes 

from its previous action. During this waiting period, the system generates a set 

of predicted outcomes and uses at least a subset of them to train the model, 

producing multiple candidate models—thereby accelerating the training 

process. 

In the upper right part of Figure 2, the knowledge flow from Mr. Koza’s work shifts 

separately into the domain of product design utilizing neural networks: 

1. Application No. 11534035 (corresponding to Patent No. 8423323) discloses a 

system and method for designing new products. A mapping relationship 

between consumer preferences and product attributes is modeled using neural 

networks. Interactive Evolutionary Computation (IEC) and genetic algorithms 

are integrated to optimize the model and search process, allowing designers to 

predict the acceptance of new products and identify highly desirable yet 

underrepresented areas in the market. 

2. Application No. 15399523 (corresponding to Patent No. 10783429) integrates 

artificial neural networks and evolutionary computation to automate the analysis 

of large-scale user data and efficiently identify the most effective web design. 

At the core of the system is a neural network that maps user attributes to different 

dimensions and values of a web page. The neural network is represented as a 
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genome and optimized through evolutionary operations such as initialization, 

testing, competition, and reproduction. 

Despite the abridged description above, one can still discern a lineage of evolving 

ideas through the patents preceding and succeeding Mr. Koza’s patents. 

A micro-view based on a single work from a researcher or scientist 

The previous section provides a macro-level perspective on Mr. Koza’s individual-

level MPs, demonstrating the usefulness of these MPs in identifying both the most 

influential sources contributing to his research and the most prominent subsequent 

developments arising from it as a whole. 

However, this macro-view has limitations, as it does not explicitly clarify how Mr. 

Koza’s specific patents are related to one another, nor how they connect to the 

identified sources and subsequent developments. For example, considering the 

patent Application No. 9290521, the macro-view alone does not help analysts 

determine whether it is more closely related to the upper strand of development, as 

suggested in Figure 2. 

Additionally, Figure 2 shows that five of Koza’s patents (numbered 1 to 5) appear in 

parallel immediately after their two common prior sources. However, the macro-

view again fails to inform analysts whether they are equally related to Application 

No. 9290521. In fact, as will be demonstrated later, Figure 2 may even be somewhat 

misleading in answering these questions. 

To overcome the shortcomings of the macro-view, this study proposes a micro-level 

perspective by conducting a GKN or LKN search on specific nodes representing the 

patents of interest, rather than designating all of Mr. Koza’s patents as key nodes. To 

demonstrate the usefulness of this micro-view in supplementing the macro-view, this 

study performs a GKN and LKN search on a single key node, corresponding to 

Application No. 9290521. 

Again, for brevity, only the resulting GKN key-node MPs are presented in Figure 3, 

as the differences between them and the LKN key-node MPs are minor. Similarly, 

in Figure 3, the black nodes represent Mr. Koza’s patents (including 9290521), while 

the three gray nodes denote patents not present in the LKN key-node MPs. 

 

 

Figure 3. MPs from a single Mr. Koza’s patent by GKN search. 
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Figure 3 reveals some unexpected observations. Firstly, two of Mr. Koza’s patents, 

Application Nos. 8603648 and 7196973, are more significantly related to 9290521 

than the others in terms of knowledge diffusion, as they are aligned along the same 

knowledge-diffusion lineage. 

There are also two other patents adjacent to 9290521 besides 8603648 in Figure 2—

Application Nos. 10355443 and 8813894. However, the key-node search selects 

8603648, including it in 9290521’s individual lineage. 

As illustrated, this micro-view helps analysts differentiate the degree of relatedness 

between 9290521 and Mr. Koza’s other patents, as well as understand its lineage. 

The same approach can be individually applied to each of Mr. Koza’s patents. 

Second, while 9290521 is structurally closer to the strand of subsequent development 

related to product design utilizing neural networks, its key-node MPs reveals that it 

is more closely aligned, in terms of knowledge diffusion, with the strand of 

subsequent development concerning the training of machine learning models. 

Conclusion 

This study contributes to the understanding of MPA by: 

1. Promoting awareness of a previously overlooked path search algorithm in MPA, 

termed key-node search, which derives MPs extending both backward and 

forward from one or more key nodes.  

2. Demonstrating the application of key-node search to capture researchers’ or 

scientists' individual-level MPs, reflecting their research trajectories within the 

broader context of the field to which they belong.  

Using a case study, this study demonstrates both a macro-view and a micro-view of 

a researcher’s or scientist’s individual-level MPs. The macro-view designates all of 

the researcher’s or scientist’s works as key nodes, helping to identify both the most 

influential sources contributing to the researcher’s or scientist’s research and the 

most prominent subsequent developments arising from it as a whole. 

The micro-view, on the other hand, designates one or a few of the researcher’s or 

scientist’s works as key nodes. This supplements the macro-view by differentiating 

the degree of relatedness between these works and the researcher’s or scientist’s 

other works. Additionally, the micro-view provides insights into the relationship 

between these specific works and the most prominent subsequent developments 

uncovered in the macro-view. 

While the individual-level MPs uncovered in the case study appear reasonable, the 

greatest challenge to the proposed approach lies in verifying how accurately these 

MPs reflect a researcher’s or scientist’s research evolution and how trustworthy the 

identified contributing sources and subsequent developments are. 

Currently, analysts can only rely on subjective evaluation, experts’ domain 

knowledge, or existing review articles and industry reports, if available. The issue of 

representativeness remains unresolved. However, this challenge is not unique to this 

study—it is a common limitation across all studies utilizing MPA. 

There are several interesting extensions to this study. One such extension is that, 

instead of limiting the proposed approach to individual researchers or scientists, it 

could be applied to other types of "individuals," such as paper authors, research 
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institutes, or firms. The resulting individual-level MPs could then be interpreted as 

reflecting their research trajectories within the broader field. 

Additionally, this study does not explore how one researcher’s or scientist’s 

individual-level MPs compare with those of another scientist or with the field-level 

MPs. Regarding the former, such an investigation could reveal how their research 

trajectories interact within the field—whether they run in parallel, converge, or 

diverge at certain points, among other patterns. Regarding the latter, examining 

interactions between individual-level and field-level MPs could uncover certain 

patterns, allowing researchers or scientists to be categorized based on their alignment 

with the field’s mainstream development. 

Open science practices 

The data and software used in the case study are both publicly and freely available. 

The AI Patent Dataset can be downloaded from USPTO’s website 

(https://www.uspto.gov/ip-policy/economic-research/research-datasets/artificial-

intelligence-patent-dataset). The software Pajek can be downloaded from its official 

website (http://mrvar.fdv.uni-lj.si/pajek/). 
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