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Abstract 

Early identification of highly disruptive publications can improve resource allocation and accelerate 

scientific innovation. Many studies have examined the factors influencing paper disruption and 

methods for identifying them. However, most methods require at least three years after publication to 

assess the disruption of papers, which may not align with the demand of stakeholders for early 

identification of disruptive publications. Moreover, current studies often treat knowledge content as 

a supplement to citation-based approaches, while neglecting the intrinsic value of knowledge. To 

overcome these limitations, this study proposes six inherent knowledge features that can be 

recognized at the time of publication and try to reveal their function in shaping the disruption of 

papers.  Specifically, we divide them as two categories, while "Knowledge linkage step," "Knowledge 

depth," and "Knowledge width" as structural features, "Knowledge age variance," "Knowledge age," 

and "Knowledge reuse" as attribute features.  We then analyzed the relationship between these 

knowledge features and the disruption of papers using two datasets from biomedical science. The 

Golden Paper dataset includes 100 highly disruptive papers and 100 control papers; and the Large-

scale dataset, which contains over 3 million papers. In the Golden Paper dataset, we balanced control 

variables using Entropy Balancing Matching (EBM), The empirical analysis shows that highly 

disruptive papers exhibit distinct characteristics. Compared to less disruptive papers at publication 

time, they contain more diverse and broadly distributed knowledge and rely on more recent 

knowledge Besides, they also exhibit lower knowledge reuse also revealed similar patterns, less depth 

and shorter linkages. The empirical analysis based on the Large-scale dataset also revealed similar 

patterns, knowledge age variance and knowledge width were positively correlated disruption scores, 

while higher knowledge age, knowledge reuse, and knowledge linkage step were associated with 

lower disruption scores. Additionally, we found that disruption scores in the Large-scale dataset 

showed a decreasing trend over the years, which may be related to opposing trends in knowledge 

feature distributions and their relationship with disruption scores. Specifically, the knowledge age, 

depth, reusability, and linkage steps of knowledge show a small upward trend over time. However, 

these features are negatively correlated with the disruption scores. Our study encourages the early 

identification of disruptive papers by revealing the relationship between knowledge features and 

disruption, offering insights for early prediction of disruptive papers in biomedical science. 

Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

Disruptive scientific innovation is a key driver of paradigm shifts in modern science, 

which transcends disciplinary boundaries and reshapes scholars' understanding. 

According to Kuhn’s (1962) theory of scientific revolutions, the evolution of science 

progresses through alternating phases of normal science and scientific revolution 

(Leibel & Bornmann, 2024). Normal science follows established paradigms, with 

innovation occurring gradually through the accumulation of knowledge. In contrast, 
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a scientific revolution disrupts existing paradigms, leading to major breakthroughs 

and steering science in new directions (Lin et al., 2022). After that, science returns 

to a new normal phase, waiting for the next scientific revolution. Scientific 

revolutions are often driven by disruptive innovations. Christensen (1997) 

introduced the concept of "disruptive innovation" in the context of marketing and 

described disruption as "the process by which a small company with few resources 

can successfully challenge the established firms. " In scientific publications, 

disruptive innovation represents a leap in the knowledge trajectory, probably leading 

to a shift in the knowledge paradigm (Funk & Owen-Smith, 2017; Leibel & 

Bornmann, 2024). Because these leaps may lead to substantial scientific 

advancements, publications characterized by high disruptive innovation are 

increasingly attracting the attention of scientists. 

In response to the growing interest in highly disruptive papers, scholars have 

increasingly focused on developing accurate identification methods, most of which 

rely on citation network analysis. Disruption index (DI) and their variants, such as 

the Journal Disruption Index (JDI) and the Interdisciplinary Disruption Index (IDI), 

are typical citation-based methods (Funk & Owen-Smith, 2017; Jiang & Liu, 2023; 

Chen et al., 2024). After being cited by two highly impact papers published in 

Nature, the DI has become a representative method for identifying disruptive 

publications (Wu et al. 2019; Park et al. 2023). According to the concept of the 

Disruption Index (DI), a paper is considered disruptive if it tends to "replace" its 

foundational citations in subsequent research. The greater its deviation from previous 

citation patterns, the more disruptive it is considered to be (Bornmann et al., 2020; 

Wuestman et al., 2020). However, while the DI and its variants are widely used, 

studies have found that their accuracy is influenced by factors such as time window, 

citation inflation, and limited data coverage (Leibel & Bornmann, 2024; Petersen et 

al., 2024). Moreover, these methods fail to address the "Sleeping Beauty" problem, 

where disruptive papers may remain dormant for years before their value is 

recognized, limiting the speed of scientific evolution (Van Raan, 2004; Li & Ye, 

2016; Hartley & Ho, 2017). These constraints demonstrate the need to reduce biases 

from citation and data that affect the disruption identification of publications. In 

addition, identifying highly disruptive papers before the public recognized their 

relevance is equally important. 

Early detection of potentially highly disruptive papers plays a vital role in 

accelerating the evolution of science, particularly when such recognition occurs in 

the year of publication. Many highly disruptive papers show few visible signs in the 

early stages, and the information available is limited at these stages (Xu et al., 2022). 

Therefore, scientists have attempted to identify early predict factors of disruption by 

analysing paper features, with author-related and reference-related factors being the 

most representative. On one hand, the number of authors is negatively correlated 

with disruption, while teams with authors from monodisciplinary background or a 

higher proportion of young scientists tend to produce more disruptive outcomes (Wu 

et al., 2019; Liu et al., 2024). On the other hand, papers citing references from a 

single field tend to have lower disruption scores, while references from multiple 

disciplines may indicate interdisciplinary innovation, leading to higher disruption 
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scores (Chen et al., 2024; Yu et al.,2024). However, author and reference features 

primarily describe external aspect of a paper, while the knowledge concent of paper 

may carry more direct information of disruption.  

Although the knowledge content of a paper has already been considered an inherent 

factor in publications (since it is fixed from the publication year), it is typically 

viewed as a supplement to complement citation-based measures of disruption rather 

than being observed as a subject independently. And these studies assume that all 

knowledge in a paper is equally important, with no difference. For example, Wang 

et al. (2023) proposed a measure of disruption score based on the impact of the 

knowledge created and used in academic papers on the trajectory of scientific 

evolution. Similarly, Lin et al. (2025) introduced the Disruptive Innovation 

Benchmark (DIB), which incorporates the scope of influence a paper has on 

subsequent publications based on knowledge trajectory measurement, to assess 

disruption. However, treating knowledge content as the main object of analysis 

rather than a supplement to citation-based measurement allows for the identification 

of key factors like the features of knowledge underlying disruptive publications that 

remain undetected by traditional citation-based methods.  

Biomedical science provides an ideal domain for identifying the disruption of papers 

based on knowledge content, as it features a more structured and standardized 

knowledge organization compared to the other domains. It also benefits from the use 

of the well-established Medical Subject Headings (MeSH), which standardizes the 

knowledge in the publications. MeSH descriptors are organized in a hierarchical tree 

structure and updated annually ("National Library of Medicine," n.d.). MeSH terms 

closer to the root node represent broader knowledge, which covers more specific 

concepts, while those closer to the leaves denote more specific knowledge. This 

hierarchical structure can reveal hidden relationships and knowledge features that 

may be overlooked when treating all knowledge elements equally (Zheng et al., 

2024b). Additionally, the annual updates managed by the NIH introduce new 

knowledge and adjust the positioning of existing knowledge in the tree to reflect 

developments in the biomedical sciences. Therefore, utilizing the MeSH tree 

structure from the year of publication to represent the knowledge framework is an 

ideal source for extracting the knowledge features of a paper. 

This study proposes a series of knowledge features exhibited by papers at the time 

of publication and reveals the correlation between different knowledge features and 

the disruption of papers. We evaluated knowledge features in a publication from 

knowledge structure and knowledge attributes. The empirical analysis utilizes a 

Golden Paper dataset with highly disruptive papers and a Large-scale dataset with 

more than 3 million publications; both came from the biomedical sciences. The 

research questions are as follows: 

RQ1: How do the knowledge feature of highly disruptive publications differ 

from others? 

RQ2: Does the inherent features of knowledge in publications affect the 

disruption scores of the publications? 

We contribute to the identification of scientific disruptive innovations in several 

ways. First, we used MeSH to distinguish the hierarchical structure and levels of 
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knowledge, which enhanced the understanding of the features of knowledge within 

papers. Second, we identified the influence of inherent knowledge features on the 

disruption scores of papers, revealing the relationship between them more clearly. 

This supports the possibility of identifying disruptive papers at the time of 

publication. Finally, by focusing on the inherent knowledge features of papers, we 

propose a new direction for the early prediction of disruptive innovations, offering a 

deeper understanding of the generation of highly disruptive papers in biomedical 

science. 

Related work 

Knowledge hierarchical structures and knowledge features 

Scientific knowledge is inherently organized through hierarchical structures, which 

serve as foundational frameworks for categorizing and interpreting complex 

information (Clauset et al., 2008; Qian et al., 2020). Tree structure is a specialized 

form of hierarchical representation, where higher-level nodes represent broader 

conceptual scopes and lower-level nodes denote specialized subfields (Muchnik et 

al., 2007; Zheng et al., 2024b). Besides, the depth of a tree branch reflects the degree 

of specialization within a knowledge domain, measured by the number of sequential 

nodes (Geng et al., 2020). A branch with multiple nested nodes may indicate a well-

developed research area, whereas shorter branches often correspond to emerging or 

less-explored knowledge topics. This structural property allows scientists to quantify 

knowledge features by analyzing positions of nodes. Recent studies have found that 

knowledge at higher levels in a hierarchy is usually more stable and connected across 

different fields because their position is nearer to the root node, while knowledge at 

lower levels has more potential for innovation (Yang et al., 2025). 

In biomedical sciences, MeSH terms are organized hierarchically in the MeSH tree, 

including 16 main categories, and each category branches into subcategories, 

progressing from general to specific concepts. For instance, general categories like 

"Diseases" branch into specific conditions such as "Neurodegenerative Diseases" 

and further into granular terms like "Alzheimer's Disease" ("National Library of 

Medicine," n.d.). The hierarchical depth reflects conceptual specificity, enabling 

precise indexing of research themes. This structure allows researchers to analyze 

knowledge breadth (via parent terms) and depth (via child terms), while the 

introduction year of MeSH terms provides temporal insights into knowledge 

evolution (Zheng et al., 2024b). Therefore, the MeSH tree is suitable for the 

induction and analysis of knowledge features.  

Scientists classify knowledge features into three main categories: structural features, 

attribute features, and temporal features. Structural features describe the overall 

configuration of knowledge, such as the range of topics covered and the level of 

specialization (Zheng et al., 2024b). For example, a paper with broad MeSH term 

coverage may exhibit greater knowledge breadth, while one with highly specific 

terms may show deeper specialization. Attribute features, on the other hand, focus 

on the intrinsic properties of knowledge and its position in a knowledge network 

(Yang et al., 2024). These features are often measured using complex network 
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metrics, which reveal how knowledge elements interact with each other (Wang et al., 

2022; Yang & Hu, 2025). And temporal features capture the dynamic nature of 

knowledge, emphasizing how it evolves over time (Yang & Hu, 2025). All these 

features provide a comprehensive view of knowledge within scientific papers, 

offering insights into their potential impact and disruption. 

Factors influencing the disruptive expression of papers 

The concept of "disruption" is defined as the possibility to challenge existing 

paradigms and redirect research trajectories in publications (Funk & Owen-Smith, 

2017). The more disruptive the paper, the more likely it is to change the existing 

research paradigm (Wei et al., 2023; Wuestman et al., 2020). 

Recent studies on the disruption of publications have identified several key factors 

that shape their potential to challenge existing paradigms. These factors can be 

grouped into inherent features, which relate to the content of paper, and external 

factors, which concern the context in which the paper is published (He & Jing, 2024). 

Scholars have extensively studied the inherent features of authors and reference 

patterns. Papers authored by senior scientists often gain recognition more quickly 

but may be less disruptive, as they tend to their align with mainstream ideas. In 

contrast, work produced by early-career researchers or monodisciplinary teams tends 

to introduce novel perspectives, which is more likely to increase the disruptive 

potential in their research (Liu et al., 2024; Jiang et al., 2024). However, higher 

productivity among authors in a paper may be associated with lower levels of paper 

disruption (Li et al., 2024). Reference features also influence a paper’s potential to 

be disruptive. Papers that cite older or foundation references tend to build upon 

established knowledge, whereas those citing recent and unconventional work are 

more likely to challenge existing paradigms. (Chen et al., 2024; Yu et al., 2024). 

Nevertheless, current studies often overlook knowledge-based features, especially 

the structural and attributive features of knowledge within papers. These features 

reflect the intrinsic organization of the knowledge of a paper and may provide 

important insights into the mechanisms of disruption, yet they have not been fully 

explored. 

More importantly, these knowledge features are static and can be analyzed as soon 

as a paper is published, unlike post-publication indicators, which evolve over time 

and are influenced by external factors (Christensen et al., 2018). By focusing on these 

inherent knowledge features, scientists can identify potential disruption early, even 

in the publication year of the paper. Therefore, investigating the relationship between 

a paper’s knowledge features at publication and its disruption is essential for 

advancing our understanding of scientific innovation and identifying highly 

disruptive papers in the earliest stage. 
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Methodology 

Data collection 

We collected two datasets with Medical Subject Heading (MeSH) terms for 

empirical analysis. The first one is 100 golden breakthrough papers published 

between 2013 and 2018 in biomedical science, as well as the corresponding control 

group papers. Golden papers come from a set of top journals in the field of 

biomedical science. First, we collected the golden papers from 2013-2018 in the top 

journals, including The New England Journal of Medicine (NEJM), The Journal of 

the American Medical Association (JAMA), and Cell. These journals publish about 

10 highly disruptive papers each year in the form of news or electronic publications. 

Due to missing indexing on some pages, we manually collected 108 eligible papers, 

of which only 100 papers with more than 1 MeSH term as golden papers entered the 

dataset. Secondly, we collected 2,136 publications that were published in the same 

journal, year, volume, and issue as the golden papers, considering them as a potential 

control group. Then, a one-to-one random matching was conducted between the 

golden papers and the potential control papers, resulting in 100 matched papers. 

These selected papers were designated as the matched control group (low disruption) 

for comparison with the high-disruption group.  

Another set of data is publications coming from the PubMed database, which was 

used to investigate how the knowledge features effect the disruption in a large-scale 

quantitative analysis. Large-scale dataset was retrieved from the prior works by 

Liang et al (2021), they built a dataset, which was expanded PubMed2020 baseline 

by adding citation data from Web of Science and NIH-OCC, providing biomedical 

science data and MeSH terms of over 30 million publications. We only retained 

publications with the number of MeSH terms more than 1 and with 10 or more 

references and cited literature for the study (Wang et al., 2023). Publications from 

2015 onwards were removed because papers in the 5-year window at the time of data 

collection did not ensure the accuracy of the disruptive index measurement. These 

processes resulted in a final dataset of 3,590,997 publications as focal papers (FP) 

with publication years between 2001-2015 (Figure 1).  include papers from 2001 

onwards because the "MeSH tree" information showed in the MeSH browser is more 

completed after that year.  
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Figure 1. The distribution of the FPs in large-scale dataset from PubMed over years. 

 

MeSH-based knowledge features 

The MeSH Thesaurus, introduced by the U.S. National Library of Medicine (NLM), 

is organized into a hierarchical structure known as the MeSH tree. It serves as a 

standardized terminology system and provides comprehensive coverage of medical 

topics. Figure 2(a) shows a part of the whole MeSH tree. Besides, a MeSH term can 

appear at multiple levels within the hierarchy. The MeSH terms positioned closer to 

the end of the hierarchy represented more specific knowledge descriptions. 

As the most authoritative content thesaurus list in the biomedical sciences, the MeSH 

tree is regularly updated each year to reflect the latest advances in medical 

knowledge and technology. Updates to the MeSH tree help scientists stay informed 

about the latest knowledge structure as well as the dynamic changes in knowledge 

hierarchical structure. In order to determine the attributes of MeSH terms at the time 

of publication, we retrieved the corresponding MeSH tree for each paper’s 

publication year from the MeSH browsers ("National Library of Medicine," n.d.). In 

this way, we can calculate all the knowledge features of each paper at their 

publication year. 
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Figure 2. Examples for MeSH tree (a) and structure features calculation of a focal 

paper (b). 

 

We propose six knowledge features based on MeSH thesaurus and MeSH tree 

hierarchy, and divide these features into two categories according to their sources. 

The structure features are derived from the position of knowledge in the MeSH tree, 

including knowledge depth, knowledge width and knowledge linkage step. The 

attribute features describe the properties of knowledge, including knowledge age, 

knowledge age variance and knowledge reuse. 

The hierarchical structure of the MeSH tree shares similarities with the evolution of 

knowledge diffusion patterns. Rowlands (2002) introduced the concept of Data 

Knowledge Diffusion Breadth (DKDB) to analyze the diffusion range of knowledge. 

Goldman (2014) highlighted that node at the initial stage of a diffusion path tend to 

occupy more central positions in the network than terminal nodes. Drawing on the 

features of diffusion breadth and intensity, we propose two structural features of the 

MeSH tree: Mean depth and knowledge width. We hypothesize that the position of 

the knowledge used in a paper, as represented in the MeSH tree, reflects the 

organizational structure of the research content. Figure 2(b) provides an example of 

the calculation. 

Knowledge depth: Represents the specificity of the research content. It is calculated 

as the average hierarchical level of all MeSH terms used in a focal paper (Eq. 1). 

Where 𝑀𝑑 is the depth of MeSH term, 𝑛 is the number of mesh terms in FP. 
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𝑀𝑒𝑎𝑛𝑑𝑒𝑝𝑡ℎ =  
1

𝑛
∑ 𝑀𝑑  

𝑛

𝑚=1

(1) 

Knowledge width: The average number of independent knowledge domains covered 

by all MeSH terms in the paper, reflecting the knowledge coverage of the study. 

Here, the second-level nodes of the MeSH tree (e.g., [B01]) are used as independent 

knowledge domains (Eq. 2). Where 𝑀𝑐 is the domain in which term m is located, 

𝐶𝑜𝑢𝑛𝑡 𝑑𝑜𝑚𝑎𝑖𝑛 only keeps the number of domains that are not duplicated, and 𝑛 is 

the total number of terms m in FP. 

𝑀𝑒𝑎𝑛_𝑤𝑖𝑑𝑡ℎ = 𝐶𝑜𝑢𝑛𝑡 𝑑𝑜𝑚𝑎𝑖𝑛( ∑ 𝑀𝑐 

𝑛

𝑚=1

) (2) 

Besides, the tightness of the connection of knowledge in the paper in the mesh tree 

can represent the degree of knowledge aggregation, which can be represented by the 

average shortest connection step between knowledge in the paper.  

Knowledge linkage step: By pairing the MeSH terms in the paper, the shortest path 

between each pair in the MeSH tree is calculated, and the average of these shortest 

paths represents the tightness of knowledge connections in the paper (Eq. 3). Where  

(𝑝𝑚, 𝑝𝑚+1) is the link step and 𝑛 is the total number of MeSH terms 𝑚 in FP. For 

example, [B02.200.492.500.500] and [B02.200.492.500.515] in Figure 2(b) have the 

same upper node, and their connection step is only 2. 

𝑀𝑒𝑆𝐻𝑚𝑖𝑛𝑝𝑎𝑡ℎ =
2∗∑ ∑ 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ(𝑝𝑚,𝑝𝑚+1)𝑛

𝑚+1
𝑛
𝑚

𝑛(𝑛−1)
(3)   

The strategic usage of both recent and diverse knowledge sources, which can 

collectively facilitate breakthroughs in science and technology (Mukherjee et al., 

2017). Inspiring by researchers’ findings that impactful research leverages both 

recent and temporally diverse knowledge, we adapt knowledge age and knowledge 

age variance as two of the attribute features in publications are defined as follows: 

Knowledge age: The temporal gap between the first appearance 𝑡0  of a MeSH term 

and its use in the focal paper which published in year 𝑡. The mean age of knowledge 

of a paper is measured as the average of the ages of all the MeSH terms used in the 

papers (Eq. 4). Where 𝑚 denotes a MeSH term used in the focal paper, 𝑛 is the 

number of MeSH terms. 

𝑀𝑒𝑎𝑛𝑦𝑒𝑎𝑟 =  
1

𝑛
∑ (𝑡(𝑚) − 𝑡0(𝑚))

𝑛

𝑚=1

(4) 

Knowledge age variance: The dispersion of reference ages, which is represented the 

temporal diversity of knowledge. The value of this feature will be expressed by 

calculating the variance of the age of knowledge in the focal paper (Eq. 5). Where 

𝑎𝑚 is the age of each MeSH term, �̅� denotes the average knowledge age in FP. 

𝑆𝑑𝑦𝑒𝑎𝑟 =  
1

𝑛
∑ (𝑎𝑚 − �̅�)2 𝑛

𝑚=1 (5)   
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Besides, knowledge reuse is also a feature of external attributes, which used to 

measure and characterize the prevalence and generality of MeSH terms in a paper. 

The annual average reuse count of each MeSH term was calculated from its first 

appearance to the publication year of the paper. Higher reuse count indicates stronger 

acceptance in science, showing that this MeSH term is more widely used The 

knowledge reuse of a single paper is measured by the average reuse count of all its 

MeSH terms, which is used to portray the level of acceptance of the knowledge 

contained in the paper at the time of publication (Eq. 6).  

𝑀𝑒𝑆𝐻𝑟𝑒𝑢𝑠𝑒 =  
1

𝑛
∑

𝑁𝑚

𝑡𝑝𝑢𝑏 − 𝑡𝑓𝑖𝑟𝑠𝑡 + 1

𝑛

𝑚=1

(6) 

Where 𝑁𝑚 is the total number of occurrences of MeSH 𝑚，𝑡𝑝𝑢𝑏 and 𝑡𝑓𝑖𝑟𝑠𝑡 represent 

the year of publication of FP and the year of m's first appearance, respectively. 

Matching analyses 

We employ Entropy Balancing Matching (EBM) method and Mann-Whitney U test 

to observe whether the difference of each knowledge feature existing or not between 

high disruption publications and the normal disruption papers. EBM is applicable for 

group-level matching, which is more suitable for balancing the confounding 

variables in our study. Meanwhile, Mann-Whitney U test is used to assess the 

significance of the differences of knowledge features. 

Entropy Balancing Matching (EBM) was introduced by Hainmueller (2012), which 

utilized changes in information entropy to match treatment and control groups at the 

level of confounding factors. This approach aims to balance the distribution of the 

control variables between the high disruption and ordinary papers, reducing the 

effect of confounders on the dependent variables to effectively compare the different 

performance of the independent variables between the two groups. In this study, we 

used EBM to ensure confounding balance for papers in the treatment group and 

control group, so that knowledge features were comparable between the treatment 

and control groups. This adjustment allows for more clearly revealing of how 

knowledge features may affect the disruptive expression of research. 

EBM involves three key steps: assigning weights to control group individuals to 

balance covariates between the treatment and control groups, calculating the 

information entropy increment between the treatment group and the weighted control 

group, and selecting the result with the minimal entropy increment as the 

counterfactual estimate (Hainmueller, 2012; Zheng et al., 2024a).  

�̂�[𝑃(0)|𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 = 1] =  
∑ 𝑃𝑖𝑤𝑖{𝑖|𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 = 0}

∑ 𝑤𝑖{𝑖|𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 = 0}

(7) 

The Eq. 7 demonstrates the computation of the weighted control group estimate, 

which serves as the counterfactual outcome for the group of highly disruptive papers. 

The left-hand side of the equation represents the expected counterfactual value for 

each high disruptive paper, assuming it were less disruptive paper. 𝑃𝑖 denotes the 
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observed outcome of each paper 𝑖 in the control group, while 𝑤𝑖 indicates the weight 

assigned to individual 𝑖 after entropy balancing. 

To evaluate the significance of differences in each knowledge feature between the 

treatment and control groups after EBM, we employed the Mann-Whitney U test. 

This non-parametric method is particularly suited for small sample sizes and data 

that do not follow a normal distribution. The steps of the test include: 

(1) Hypothesis formulation: Setting null hypothesis 𝐻0 that there is no significant 

difference between high and ordinary disruption papers; alternative hypothesis 

𝐻1 that there is a significant difference between the two groups of papers. 

(2) Ranking and summation: All observations from the two groups (highly and 

less disruptive papers) are pooled and ranked together. The sum of rankings 

for each group is calculated separately, denoted as 𝑆𝑢𝑚𝐷0  (less disruptive 

papers) and 𝑆𝑢𝑚𝐷1 (highly disruptive papers) 

(3) U-statistics test: The U-statistic for each group is computed using the follow 

Eq. 8 Where 𝑆𝑢𝑚𝐷𝑘 (k = 0 or 1) denotes the sum of ranking for one group, 

𝑛 denotes the number of observations in the group. The smaller U-value 

between the two groups is selected and compared to the critical value at a 

significance level (p = 0.05). If U-test < Up, we reject 𝐻0 and confirm that 

there is a significant difference between high disruption and ordinary 

disruption papers, and vice versa. 

𝑈𝑡𝑒𝑠𝑡 = min (𝑆𝑢𝑚𝐷𝑘=1 −
𝑛(𝑛 − 1)

2
, 𝑆𝑢𝑚𝐷𝑘=0 −

𝑛(𝑛 − 1)

2
) (8) 

The above steps are looped 6 times to obtain results for all knowledge features. In 

other words, knowledge features passing the test are considered to have significant 

effect on the disruption scores of papers, while those failing the test are excluded 

from further analysis. 

Measuring disruption score 

To determine the disruption scores of papers, we adopted two methods depended on 

the characteristics of the datasets. For the smaller dataset of Golden papers, we 

assigned fixed disruption scores: Golden papers were assigned a score of 1, 

representing high disruption, while ordinary papers were assigned a score of 0. And 

for the large-scale dataset, we applied an indicator-based approach to measure 

disruption scores. Although the indicators proposed by Wu et al (2019), which relies 

on the citation network of focal papers, has been widely acknowledged, its scope is 

limited to document-level analysis. Wang et al (2023) introduced disruption 

indicators that considers shifts in knowledge flow to optimised previous studies and 

validated them in biomedical datasets, incorporating the role of focal papers’ 

knowledge content. Furthermore, such a series of disruption indicators were later 

expanded to WOS dataset by Tong et al (2024). 

We focused on the impact of knowledge features on disruption scores in this study, 

and employing the ED index (ED) proposed by Wang et al. (2023) to calculate focal 

papers’ disruption scores is more suitable. Figure 3 provides the content and patterns 
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to be observed when measuring this indicator. In the citation network related to the 

focal paper, nodes are represented by different shapes and shades of gray (diamonds 

for references and focal papers, while circles and squares denotes different types of 

citing papers separately). Knowledge elements are distributed across this network, 

and categorized into six types based on their frequency and position, represented as 

triangles. Wang et al (2023) used individual MeSH terms and their combinations as 

knowledge elements to measure disruption scores (𝐸𝐷_𝑒𝑛𝑡 and 𝐸𝐷_𝑟𝑒𝑙𝑠) separately. 

Therefore, we focused on 𝑚𝐸𝐷_𝑒𝑛𝑡  for main analysis and used 𝐸𝐷_𝑟𝑒𝑙𝑠  for 

robustness checks to ensure the reliable results and minimize bias. 

The ED index measures the disruption scores of a focal paper by analyzing the flow 

and transformation of knowledge elements within its citation network. To account 

for the effect of citation inflation, the index incorporates a weighting parameter 𝑚 as 

proposed by Funk and Owen-Smith (2017). The ED index consists of two 

components: the deviation of the focal paper’s knowledge elements from its 

references  𝐸𝐷𝑏  and the extent to which the focal paper’s new knowledge is 

reinforced by its citing papers 𝐸𝐷𝑎,𝑡, as shown in Eq. 9 and Eq. 10. Where 𝑁 denotes 

the number of papers that share at least one MeSH term and citing FP, and 𝑛𝑏𝑖,  𝑛𝑏𝑗, 
𝑛𝑎𝑖 , 𝑛𝑎𝑛 , 𝑛𝑎𝑗  and 𝑛𝑎𝑘  represent the number of knowledge elements of the 

corresponding type, respectively. By setting 𝛽 as a parameter, the ED index exhibits 

different behaviours under varying parameter values. Since no specific component 

is emphasized in this study, the ED index is calculated as the average of the two 

components (𝛽 = 0.5), as shown in Eq. 11. 

 

 

Figure 3. Illustration of the citation pattern with knowledge elements related to FP 

(Wu et al., 2019; Wang et al., 2023). 
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𝐸𝐷𝑏 =  
𝑛𝑏𝑖 − 𝑛𝑏𝑗

𝑛𝑏𝑖 + 𝑛𝑏𝑗
 (9) 

𝐸𝐷𝑎,𝑡 =  
1

𝑁
∑

𝑛𝑎𝑖 + 𝑛𝑎𝑛 − 𝑛𝑎𝑗 − 𝑛𝑎𝑘

𝑛𝑎𝑖 + 𝑛𝑎𝑛 + 𝑛𝑎𝑗 + 𝑛𝑎𝑘

𝑁

𝑐=1
 (10) 

𝐸𝐷𝑡 =  𝛽𝐸𝐷𝑏 + (1 − 𝛽)𝐸𝐷𝑎,𝑡 (11) 

 

Regression models for knowledge features and disruption score of publications  

Disruption score was used as the dependent variable in our study, which was 

measured by 𝐸𝐷_𝑒𝑛𝑡 , with individual MeSH terms serving as the knowledge 

elements. And six types of knowledge features were employed as independent 

variables in the regression models. Besides, several factors except knowledge 

features may affect the disruption of publications, which should be controlled in the 

regression models. Previous studies revealed that the characteristics of metadata in 

papers, especially the number of authors and references, were fully correlated with 

disruption scores (Wu et al., 2019; Petersen et al., 2024). Similarly, maintaining the 

number of MeSH terms at a consistent level may help enhance comparability 

between papers. Therefore, we selected these factors as control variables. 

Number of authors: The number of authors represents the team size of publications. 

Recent studies show that small teams tend to produce more disruptive publications 

and software compared to large teams (Wu et al., 2019). However, large teams with 

high organizational diversity may also generate high disruptive outcomes (Yoo et al., 

2024). 

Number of references: A longer reference list is one of the key factors of citation 

inflation, leading to the density of citation networks of publications, which may 

distort the calculation of a publication's disruptive score (Petersen et al., 2024). 

Number of MeSH terms: Citation inflation is usually accompanied by an increase in 

the amount of knowledge in the publications. Controlling the number of MeSH terms 

contributes to reducing the influence of knowledge inflation. 

Furthermore, the publication years were adjusted to minimize potential influence. 

Table 1 exhibits the details of all types of variables. 

By considering the dependent variable as a continuous variable, we employed the 

Ordinary Least Squares (OLS) regression model to investigate the relationship 

between knowledge features and disruption scores in publications. Eq. 12 shows the 

basic regression model. 

𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑖 = 𝛼0 + 𝛼1𝑀𝑒𝑎𝑛_𝑦𝑒𝑎𝑟𝑖 + 𝛼2𝑆𝑑_𝑦𝑒𝑎𝑟𝑖 + 𝛼3𝑀𝑒𝑎𝑛_𝑑𝑒𝑝𝑡ℎ𝑖 +
𝛼4𝑀𝑒𝑎𝑛_𝑤𝑖𝑑𝑡ℎ𝑖 + 𝛼5𝑀𝑒𝑆𝐻_𝑟𝑒𝑢𝑠𝑒𝑖 + 𝛼6𝑀𝑒𝑆𝐻𝑚𝑖𝑛_𝑝𝑎𝑡ℎ𝑖 + 𝛼7𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖 +
𝑃𝑌𝑖 + 𝜀1      (12) 

Where 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 denotes the disruption score of the FP 𝑖, Mean_year , Sd_year, 

𝑀𝑒𝑎𝑛_𝑑𝑒𝑝𝑡ℎ , 𝑀𝑒𝑎𝑛_𝑤𝑖𝑑𝑡ℎ , 𝑀𝑒𝑆𝐻_𝑟𝑒𝑢𝑠𝑒  and 𝑀𝑒𝑆𝐻𝑚𝑖𝑛_𝑝𝑎𝑡ℎ denote the 

knowledge features of FP 𝑖 separately, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 contains all the control variables, 
𝑃𝑌𝑖 is the year of publication fixed effects, and 𝜀1is the error term. 
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Table 1. The list of variables used in OLS regression models. 

Variables 
Symbol of 

variables 

Description of variables 

Diruption scores ED_ent 

The disruption scores of FP 

calculated by using individual 

MeSH terms as knowledge 

element. 

Knowledge age variance Sd_year 
Age variance of knowledge used 

by FPs. 

Knowledge age Mean_year 
Average age of knowledge used 

by FP. 

Knowledge reuse MeSH_reuse 

Average number of times the 

knowledge in the FP appeared in 

the prior publications up to the 

years when FP was published. 

Knowledge linkage step 
MeSHmin_pa

th 

The average step size when the 

knowledge used by FP is pairwise 

connected. 

Knowledge depth Deep_mean 

The average depth of the 

knowledge used by FP in the 

Mesh tree hierarchy. 

Knowledge width Wide_mean 

The number of branches covered 

in the Mesh tree by the knowledge 

used by FP. 

Number of MeSH Len_MeSH 
The number of individual MeSH 

terms of a FP. 

Reference number Ref_num The number of references of a FP. 

Number of authors AuthorNum The number of authors of a FP. 

Publication year Pub_year The publication year of a FP. 

 

Result 

Knowledge features of highly disruptive publications 

We used the EBM approach to balance the differences based on selected control 

variables between highly disruptive papers and less disruptive papers in the Golden 

Paper dataset. Less disruptive papers (control group) were matched to highly 

disruptive papers (treatment group) using these variables. After matching, a balance 

test checked if the matching worked well. The results showed that the control 

variables for retracted articles between highly disruptive papers and ordinary papers 

were balanced, as displayed in Figure 4, which made the comparison more reliable 

and reduced the impact of control variables on the results. 
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Figure 4. Standardized mean differences of control variables for papers between 

groups of highly and less disruptive papers before and after EBM. 

 

 

Figure 5. Knowledge features differences of papers between groups of highly and less 

disruptive papers after EBM. 
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Following the balance test, we calculated the average scores of the six knowledge 

features using balancing weights derived from the EBM process. Figure 5 shows the 

differences in knowledge features between the two groups. The golden papers 

demonstrated higher knowledge age variance (18.34 vs. 13.93) and a greater average 

knowledge width (10.40 vs. 9.70), indicating that highly disruptive papers tend to 

incorporate more diverse and broadly distributed knowledge under EBM balance. 

Conversely, the knowledge age, knowledge depth, knowledge reuse, and knowledge 

linkage step were all lower for highly disruptive papers compared to normal 

disruption papers. These results suggest that highly disruptive papers are 

characterized by younger knowledge, lower reuse at the time of publication, as well 

as less knowledge depth, and shorter knowledge linkages. 

Furthermore, we employed the Mann-Whitney U test for each feature to assess 

whether a statistically significant difference exists between highly disruptive papers 

and ordinary papers. The null hypothesis (H0) assumed no significant difference 

between the two groups, while the alternative hypothesis (H1) proposed a significant 

difference. The results are summarized in Table 2. The Z-score representing the 

standardized U statistic, a positive Z-score indicates that highly disruptive papers 

exhibit higher values for the knowledge feature compared to ordinary papers. When 

the absolute value of the Z-score exceeds 3.29, the difference is statistically 

significant at the 0.001 level, choosing the hypothesis (H1). Obviously, all six 

knowledge features were found to show significant differences, suggesting that 

highly disruptive papers are characterized by distinct knowledge features at the time 

of publication when compared to ordinary papers. 

 
Table 2. The results of the Mann-Whitney U test for the difference in each knowledge 

feature. 

Knowledge feature 
Z-value P-value Hypothesis 

selection 

Mean_year -4.833 P<0.001 H1 

Sd_year 6.152 P<0.001 H1 

Deep_mean -3.366 P<0.001 H1 

Wide_mean 5.186 P<0.001 H1 

MeSH_reuse -8.366 P<0.001 H1 

MeSHmin_path -4.933 P<0.001 H1 

 

The trends of knowledge features and disruption scores for all the biomedical 

publications 

We observe the trends of six knowledge features of the publications in the Large-

scale dataset over years, as shown in Figure 6. The trend of the knowledge width 

demonstrates volatility over the years, but stabilizes at relatively low values after 

2009.In contrast, the values of the other five features show a continuous upward trend 

over years. In terms of the attribute features of knowledge, papers tend to use more 

established and older knowledge, with a diversity in the age distribution of 

knowledge used. Regarding the structure features of knowledge, the low mean width 
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indicates that the papers cover a narrow and specialized range of topics. In contrast, 

the increasing depth of knowledge suggests that studies increasingly focus on more 

specific knowledge located deeper within the MeSH hierarchy. In addition, the 

increasing trend in the mean pathway of knowledge link demonstrates that the 

knowledge in the papers may span across different branches, with longer path 

connection. 

 

 

Figure 6. Trends of knowledge features for the publications of Large-scale dataset 

over years. 

 

The distribution of disruption scores shows a slow decline over years (Figure 7), 

which is resemble to the results reporting in Nature by Park et al (2023), including 

decreases in the upper and lower bounds (after removing outliers) and the median 

value. This may indicate that more recent papers rely increasingly on established 

knowledge, limiting the possibility to change the evolutionary trajectory of 

knowledge within the biomedical science (Wang et al., 2023). 
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Figure 7. The distribution of disruption scores in the publications of large-scale 

dataset and their trends over years. 

 

Regression analysis 

We analyzed the relationship between knowledge features and disruption scores of 

publications using regression models. Table 3 reported the results. Model 1 only 

contains the control variables and disruption score. Model 2 and 3 show the effects 

of structural features and attribute features on disruption scores of publications, 

respectively. Model 4 uses all variables. The independent variables display 

consistent patterns across the models, highlighting the stability of these relationships. 

Specifically, higher knowledge age variance is significantly associated with higher 

disruption scores, and similar positive correlation results are found for the knowledge 

width. However, higher knowledge age, knowledge reuse and knowledge linkage 

step were negatively associated with disruption scores.  
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Table 3. Estimated relationships between knowledge features and ED_ent disruption 

scores in Large-scale dataset. 

Disruption 

ED_ent 

Control (1) Structure (2) Attribute (3) All features 

(4) 

Sd_year   0.0195*** 

(0.0006) 

0.0324*** 

(0.0005) 

Mean_year   -0.0260*** 

(0.0007) 

-0.0835*** 

(0.0009) 

MeSH_reuse   -0.2082*** 

(0.0004) 

-0.1576*** 

(0.0005) 

Pmidmin_path  -0.1926*** 

(0.0008) 

 -0.1170*** 

(0.0009) 

Deep_mean  -0.1286*** 

(0.0008) 

 -0.1046*** 

(0.0008) 

Wide_mean  0.0213*** 

(0.0006) 

 0.0251*** 

(0.0006) 

Len_MeSH -0.0318*** 

(0.0004) 

-0.0362*** 

(0.0005) 

-0.0721*** 

(0.0004) 

-0.0876*** 

(0.0005) 

Ref_num -3.3562*** 

(0.0051) 

-3.3208***  

(0.0051) 

-3.2662*** 

(0.0051) 

-3.3273*** 

(0.0051) 

AuthorNum -1.8771*** 

(0.0253) 

-1.1085*** 

(0.0250) 

-2.0184*** 

(0.0246) 

-1.6520*** 

(0.0246) 

Pub_year YES YES YES YES 

const 7.1876*** 

(0.0255) 

5.0782***  

(0.0260) 

6.4454*** 

(0.0292) 

4.1094*** 

(0.0313) 

Obs. 3590997 3590997 3590997 3590997 

F-test 137860.4306 96632.6677 115018.6653 84475.4704 

R²  0.1331 0.1585 0.1831 0.1904 

Note: Robust standard errors in parentheses. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

To ensure the robustness of the relationships between the six features and disruption 

scores, we tested alternative methods for calculating the dependent variable and 

adjusted the regression approach (Table 4). First, we replaced individual MeSH 

terms with MeSH combinations as the knowledge elements for dependent variable 

measurement, both of which were provided by Wang et al (2023). Model 1 and 2 

show the relationship results when ED_ent (measuring by individual MeSH term) 

and ED_rels (measuring by MeSH combination) are used as dependent variables, 

respectively. Second, we employed Stepwise Regression model (SR) to replace OLS 

regression model and randomly selected 80% of the sample from the Large-scale 

dataset as the test data, with the results shown in Model 3 and 4. SR not only 

identifies the suitable set of predictors but also addresses multicollinearity issues. All 

of the results confirm that the correlations between knowledge features and 

disruption scores remain significantly robust across all checking cases. 
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Table 4. Robustness check based on different disruption scores, and Stepwise 

Regression models. 

Disruption 
OLS Regression model Stepwise Regression model 

ED_ent (1) ED_rels (2) ED_ent (3) ED_rels (4) 

Sd_year 0.0324*** 

(0.0005) 

0.1432*** 

(0.0008) 

0.0313*** 

(0.0006) 

0.1463*** 

(0.0009) 

Mean_year -0.0835*** 

(0.0009) 

-0.3335*** 

(0.0013) 

-0.0894*** 

(0.0009) 

-0.2825*** 

(0.0014) 

MeSH_reuse -0.1576*** 

(0.0005) 

-0.4230*** 

(0.0007) 

-0.1571*** 

(0.0006) 

-0.4460*** 

(0.0009) 

Pmidmin_path -0.1170*** 

(0.0009) 

-0.1897*** 

(0.0013) 

-0.1056*** 

(0.0011) 

-0.1395*** 

(0.0016) 

Deep_mean -0.1046*** 

(0.0008) 

-0.2067*** 

(0.0012) 

-0.1187*** 

(0.001) 

-0.2376*** 

(0.0015) 

Wide_mean 0.0251*** 

(0.0006) 

0.0947*** 

(0.0008) 

0.0242*** 

(0.0006) 

0.0785*** 

(0.0010) 

Len_MeSH -0.0876*** 

(0.0005) 

-0.0647*** 

(0.0008) 

-0.0861*** 

(0.0006) 

-0.0462*** 

(0.0009) 

Ref_num -3.3273*** 

(0.0051) 

-3.6381*** 

(0.0076) 

-3.3197*** 

(0.0057) 

-3.4991*** 

(0.0085) 

AuthorNum -1.6520*** 

(0.0246) 

-2.1774*** 

(0.0369) 

-1.6168*** 

(0.0285) 

-2.1241*** 

(0.0426) 

Pub_year YES YES YES YES 

const 4.1094*** 

(0.0313) 

0.5940*** 

(0.0469) 

0.4546*** 

(0.0007) 

0.9280*** 

(0.0010) 

Obs. 3590997 3590997 2872797 2872797 

F-test 84475.4704 114885.0076 67037.5705 91791.0351 

R²  0.1904 0.2424 0.1892 0.2421 

Note: Robust standard errors in parentheses. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Conclusion and discussion 

Early identification of publications with disruptive potential can significantly 

enhance the strategic allocation of scientific resources, fostering more efficient 

research system. We proposed six knowledge features based on the contents of 

publications at the time of their publication, including structural features and 

attribute features. This study conducted an in-depth analysis of the inherent 

knowledge features of papers to explore how these features differ from highly 

disruptive papers and less disruptive papers from the Golden Paper dataset. 

Furthermore, we confirm the critical role of these knowledge features in disruption 

scores by the analysing their relationship in a large-scale dataset of biomedical 

science. The findings quantitatively demonstrate significant correlations between 

knowledge features and disruption scores, offering a new perspective for identifying 

disruptive papers at an early stage. 
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High vs. Low Disruption of Papers: Differences in knowledge features at publication 

time 

We shift the focus of identifying disruptive publications from citation networks to 

the features of knowledge at the year of paper publication, which provides a new 

perspective for early identification of disruptive papers. Empirical results reveal 

significant differences in knowledge features across papers at the time of publication 

between the groups of highly disruptive and less disruptive papers. Furthermore, a 

large-scale data analyses confirm associations between these features and disruption 

scores. 

Specifically, highly disruptive papers exhibit distinct knowledge features compared 

to less disruptive papers at the time of publication in the Golden Paper dataset. They 

are associated with greater diversity in knowledge age, lower average knowledge age, 

and less reuse of knowledge. Moreover, they tend to demonstrate lower knowledge 

depth and shorter path lengths, and broader knowledge coverage. Similarly, in the 

Large-scale dataset of biomedical science, knowledge features such as knowledge 

age variance and knowledge width are positively correlated with disruption scores. 

In contrast, the knowledge age, knowledge depth, and the distance of knowledge 

connections exhibit significant negative correlations. 

Our empirical findings indicate that it may be possible to identify highly disruptive 

study at the time of publication, rather than several years later as traditionally 

measured approaches (e.g., using DI1, DI5) (Wu et al., 2019; Funk & Owen-Smith, 

2017). Unlike methods that depend on citation networks, we emphasize the inherent 

knowledge features at the publication time of papers. Specifically, we use MeSH 

terms to represent the knowledge content of each paper and calculate knowledge 

features. Our findings highlight the value of knowledge features in assessing 

scientific contributions. In addition, this approach effectively addresses limitations 

in citation-based approaches, such as citation inflation and time delay, which often 

bias disruption measurements (Petersen et al., 2019; Petersen et al., 2024). While our 

findings exhibit only a correlation between knowledge features and disruption scores 

of publications, this study may offer a useful perspective for understanding how 

highly disruptive works emerge. 

Misaligned knowledge utilization may correlate with declining of disruption scores 

We observed a consistent decline in the disruption scores of papers over the years in 

large-scale biomedical datasets. This trend aligns with the findings of Park et al 

(2023), who reported a similar decrease in disruption across 45 million documents. 

Park et al (2023) attributed this decline to a narrowing use of prior knowledge, where 

researchers increasing rely on well-established knowledge rather than exploring 

unconventional knowledge. This finding suggests a growing tendency to build on the 

"shoulders of giants", instead of venturing into less-charted research areas. Our study 

supports this perspective from the viewpoint of knowledge utilization. 

In other word, the declining trend in the disruption scores of papers may be partially 

explained by changes in how knowledge is utilized in the publications. Specifically, 

we reveal that the knowledge features such as knowledge age, depth, reusability, and 

linkage distance have shown a slight upward trend over years, indicating that more 

recent publications tend to depend on older, more reusable, more specific knowledge, 
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with longer distances between knowledge connections. However, these features are 

negatively correlated with disruption scores. The opposing trends between the actual 

distribution of knowledge feature and the traits typically found in highly disruptive 

papers indicate some misalignments in knowledge utilization strategies. In other 

words, our findings reveal a significant difference in knowledge utilization features 

in most of the recent papers from the knowledge features observed in highly 

disruptive papers. These findings provide new insights on how shifts in knowledge 

utilizations might associated with the broader decline in disruption scores. 

Limitations and future work 

Although we have obverse that knowledge features are significantly affect the 

disruption score of publications, several limitations remain. First, while our analysis 

reveals the significant correlations between knowledge features and disruption score, 

we have not yet systematically evaluated the effectiveness of knowledge features in 

predicting highly disruptive papers at the early stage, which remains a key direction 

for future researches. Second, our empirical analysis focused on the biomedical 

science. Although we include both Golden papers and Large-scale dataset validation, 

the findings have not been extended to broader scientific disciplines. Lastly, due to 

current limitations in algorithms and computational resources, we are unable to 

dynamically collect the features of individual knowledge elements within complex 

knowledge networks at the time of publication. Although recognizing the potential 

importance of these features, we could not fully incorporate them in this work. Future 

studies may explore how to capture the evolution of knowledge and construct 

network-based modelling address this gap. 
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