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Abstract 

Peer review is the cornerstone of scientific evaluation, ensuring the quality, accuracy, and integrity 

of published research. However, challenges such as reviewer bias, time constraints, and the 

increasing volume of submissions have strained traditional peer review systems, resulting in delays, 

lower-quality reviews, and reviewer fatigue. These limitations highlight the need for innovative 

solutions. Large language models (LLMs) have emerged as promising tools to support or potentially 

replace certain aspects of peer review. This study investigates the potential of LLMs to enhance 

post-publication peer review, offering quality assessments and recommendations for published 

articles. Specifically, we designed two tasks to evaluate the performance of LLMs in post-

publication research evaluation: identifying high-quality articles (Task 1) and providing ratings on 

recommended articles (Task 2). Six versions of three generative LLMs, including open-source 

models such as Qwen and Llama, the closed-source GPT-4o-mini model, and four BERT-based 

models, were assessed using in-context learning and fine-tuning approaches. The data for training 

and evaluation were sourced from H1 Connect (formerly Faculty Opinions), a platform for expert 

recommendations in the biomedical domain. Results indicate that fine-tuning LLMs with labelled 

data can significantly enhance their alignment with human expert evaluations. For Task 1, fine-tuned 

models performed well in identifying high-quality articles with an accuracy of 84%. However, for 

Task 2 - rating on recommended articles - LLMs struggled to match human judgement consistently 

with an accuracy below 0.6, highlighting their current limitations in nuanced, context-dependent 

tasks.  

Introduction 

In the realm of academic publishing, peer review serves as the cornerstone of 

scientific evaluation and dissemination (Bornmann, 2008). The process ensures that 

manuscripts meet certain standards of quality, accuracy, and integrity (defined by a 

certain field, community, journal etc.). Peer review, while essential, is not without 

challenges. Issues such as time constraints, reviewer biases (Bornmann, 2011), and 

the increasing volume of submissions necessitate solutions to enhance the 

efficiency and effectiveness of peer review. In this context, large language models 

(LLMs) have emerged as a promising tool for augmenting or replacing peer review. 

LLMs, exemplified by OpenAI’s GPT series and Google’s BERT, have 
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demonstrated remarkable capabilities in natural language understanding and 

generation (ChatGPT was introduced to the public in 2022, see Farhat et al., 2023). 

LLMs leverage vast amounts of textual data to learn linguistic patterns and generate 

human-like text. Their applications span various domains, including automated 

content generation, research classification (Wu et al., 2024), scholarly 

recommendation (Jia et al., 2025), knowledge association prediction (Wu et al., 

2021), sentiment analysis, and language translation. More recently, the potential of 

LLMs to assist in research evaluation tasks has garnered attention from researchers 

and practitioners alike (Thelwall, 2024a, 2024b). LLMs have been used to 

undertake evidence synthesis and systematic assessment tasks (Joe et al., 2024), to 

propose references for anonymized in-text citations (Algaba et al., 2024), to predict 

citation counts, Mendeley reader counts, and social media engagement (de Winter, 

2024; Vital Jr et al., 2024), and to identify prominent scholars (Sandnes, 2024). 

The academic publishing landscape is witnessing significant growth (Bornmann et 

al., 2021), with an increasing number of manuscripts submitted for review and 

publication. The increasing number, while reflecting the importance of scientific 

inquiry for society, also places immense pressure on the peer review system. 

Reviewers and editors, as rule volunteers, face the task of evaluating numerous 

manuscripts and grant proposals within limited timeframes. Furthermore, the 

traditional peer review process has been often criticized for its subjectivity, 

potential biases, and the increasing difficulty in obtaining high-quality reviews. 

Consequently, delays in the review process, difficulties in finding reviewers, 

useless reports, and reviewer fatigue have become prevalent issues. These 

challenges highlight the need for innovative approaches to relieve the participants 

(reviewers) in the peer review process. 

Several studies have explored the feasibility and effectiveness of using LLMs in 

peer review processes (Liang et al., 2024; Liu & Shah, 2023; López-Pineda et al., 

2025; Thelwall & Yaghi, 2024). These studies suggest that LLMs can assist in 

specific peer review tasks such as identifying errors, verifying checklists, and 

providing feedback, but they are not yet reliable for complete evaluations of papers 

or proposals. One of these studies focused on the use of LLMs, specifically GPT-

4, for specific reviewing tasks such as identifying errors, verifying checklists, and 

choosing the better paper among pairs of abstracts (Liu & Shah, 2023). The findings 

suggest that while LLMs can effectively identify errors and verify checklist 

questions with high accuracy, they struggle with more subjective tasks like 

discerning the quality of papers. This indicates that LLMs can serve as valuable 

assistants for specific, well-defined reviewing tasks but are not yet ready to replace 

human reviewers entirely. 

Another empirical analysis evaluated the quality of feedback generated by GPT-4 

on papers (Liang et al., 2024). The study compared LLM-generated feedback with 

human peer reviewer feedback across thousands of papers from prestigious journals 

and conferences. The results show a significant overlap between the points raised 

by GPT-4 and human reviewers, particularly for weaker papers. An additional user 

study revealed that researchers found the LLM-generated feedback helpful, 

suggesting that LLMs can provide valuable assistance in the peer review process, 
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especially for researchers in under-resourced settings. The most recent study 

(Thelwall & Yaghi, 2024) evaluated whether ChatGPT 4o-mini can estimate the 

quality of papers by comparing its scores to departmental averages across 34 Units 

of Assessment in the United Kingdom’s Research Excellence Framework (REF) 

2021. The results show a generally positive correlation, with some variations, 

suggesting that LLMs can provide reasonable quality estimates, especially in the 

physical and health sciences. These assessments are based only on titles and 

abstracts, not comprehensive evaluations. 

The previous studies on the use of LLMs in the peer review process reveal that their 

use holds significant promise for addressing some of the challenges associated with 

traditional peer review. Although LLMs may provide valuable feedback, it is 

essential to recognize their limitations. For example, LLMs seem to include 

“hallucinating” information into otherwise plausible responses (Thelwall, 2024b). 

Ongoing research should try to refine these models to ensure their effective and 

ethical use in the academic community. Building on the insights from previous 

studies, the current empirical investigation aims to evaluate the use of LLMs for 

post-publication peer review. Post-publication review, unlike traditional pre-

publication review, occurs after the paper has been published, providing a platform 

with recommendations and quality assessments of papers. This study seeks to assess 

the opportunities of LLMs in enhancing post-publication peer review processes. By 

leveraging advanced LLMs, the study aims to explore how these models may 

complement human expertise and streamline the review workflow. 

In this study, we designed two tasks to assess the LLMs’ capabilities in post-

publication research evaluation: identifying high-quality articles (Task 1) and 

recommended article rating (Task 2). Six versions of generative LLMs, including 

open-source Qwen, Llama models, and closed-source GPT-4o-mini model, in 

addition with four BERT-based language models, were tested under two different 

learning settings: in-context learning and fine-tuning, to complete the two tasks. 

Using data from H1 Connect (a post-publication peer review service in medicine 

and life sciences, formerly known as Faculty Opinions) as training and test data, we 

performed model comparisons on both tasks. The results revealed that, with an 

appropriate fine-tuning strategy, current LLMs have strong potential to serve as 

preliminary reviewers to identify high-quality papers (Task 1), with the fine-tuned 

GPT-4o-mini model achieving the accuracy of 84% and BERT models above 75%. 

However, the models still lack the capabilities to achieve expert-level judgment 

when facing more complicated tasks like article rating (Task 2), in which rating 

differences are more nuanced to learn. 

Data and Tasks 

Data source 

H1 Connect is a specialized platform designed to provide expert recommendations 

and support research evaluation in the biomedical domain. It delivers scholarly 

output metadata along with expert-generated recommendations, which are enriched 

with detailed ratings, commentaries, and classification codes. The additional 
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information explains the basis for the inclusion of the papers on the platform and 

their relevance for the community. We selected the H1 Connect data for its 

extensive data coverage and rich evaluation metadata across biomedical fields, 

which ensures a representative and diverse dataset for comparing assessments from 

experts and other instruments such as bibliometrics or LLMs. 

Task formulation 

To examine the research evaluating capabilities of LLMs, we designed two tasks of 

high-quality article identification (Task 1) and recommended article rating (Task 2). 

To achieve the tasks, we collected two datasets from H1 Connect, with their details 

given in descriptions below and Table 1. Given that testing LLMs on the global 

dataset comes with an unneglectable burden of computational costs, we randomly 

sampled partial articles for each task from the entire dataset. We used the article 

abstracts as our input to the models due to the incomplete availability of full texts. 

Task 1 - High-quality article identification: This task aims to evaluate how 

effectively LLMs can identify high-quality articles from a mixed pool of high- and 

low-quality articles, compared to the judgment of human experts. Low-quality 

articles are defined as those with no expert recommendations, and high-quality 

articles are those with three or more expert recommendations. To construct a mixed 

pool for testing, we compiled 4,538 articles from OpenAlex (Priem et al., 2022) – 

a bibliographic catalogue of scientific papers – with no expert recommendations 

and 4,994 articles with three or more expert recommendations. The not-

recommended articles were published between 2010 and 2020 in the same journal, 

with the same volume and issue as the recommended papers. We excluded the 

journals Science, Nature, Proceedings of the National Academy of Sciences of the 

United States of America, Science Advances, Nature Communications, Scientific 

Reports, and PLOS ONE due to their multidisciplinary nature for the selection of 

not-recommended papers. The selected LLMs are required to retrieve the 4,538 

high-quality articles from this pool as accurately as possible. 

Task 2 - Recommended article rating: This task delves into a more detailed 

objective of rating research articles based on their quality and content. To avoid 

complications in synthesizing expert ratings, we focused on articles with only one 

recommendation at this stage. The data collection also follows procedures as in 

Task 1, resulting in 86,805 articles with a rating of 1, 54,154 articles with a rating 

of 2, and 11,089 articles with a rating of 3 (roughly 8:5:1). Considering the 

computational costs for model testing, we sampled a balanced dataset that consists 

of 5,000 articles from each rating of 1 (good), 2 (very good), and 3 (excellent), 

ending with 15,000 articles.  
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Table 1. Descriptions of datasets used in Task 1 and Task 2. 

Task 

1 
# Article 

Three 

recommendations 
No recommendation 

4,994 4,538 

Task 

2 
# Article 

1 (Good) 2 (Very good) 3 (Exceptional) 

5,000 5,000 5,000 

 

Methodology framework 

The overall research framework is presented in Figure 1. To perform Task 1 and 

Task 2, we selected four BERT variant models and six generative LLMs, with 

details provided in the model selection section. Two representative model 

adaptation techniques, in-context learning (ICL) and fine-tuning, were employed to 

adapt the models to output the desired results for the tasks. These techniques are 

described in detail in the following subsections. 

 

 

Figure 1. The overall research framework. 

 

Model selection 

Four BERT variant models: SciBERT (Beltagy et al., 2019), BioBERT (Lee et al., 

2020), RoBERTa (Liu et al., 2019), and PubMedBERT (Gu et al., 2021) are 

encoder-only language models built on the transformer architecture, which converts 

the input language as embeddings for downstream analysis. The key distinction 

among these models lies in their training corpora and methods. SciBERT is tailored 

for scientific NLP tasks, pre-trained on 1.14 million scientific articles from 
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Semantic Scholar1. BioBERT extends the original BERT pretraining corpus by 

incorporating 29 million PubMed abstracts and full-text articles from PubMed 

Central2, enhancing its performance in the biomedical domain. PubMedBERT also 

targets biomedical domain, but it exclusively uses PubMed abstracts and PubMed 

Central full-text articles for pretraining, omitting the general BERT corpus, which 

makes it more specialized for biomedical tasks. RoBERTa, a refined version of 

BERT, optimizes the pretraining procedures with modified training parameters and 

task settings, improving model efficiency and performance while retaining general-

purpose applicability.  

Current generative LLMs generally employ decoder-only architecture, enabling 

them to generate text sequences directly based on the given natural language input. 

The widespread adoption of ChatGPT has shown the remarkable capabilities of 

such models in language comprehension, text generation, and question-answering. 

Apart from GPT models, multiple big tech companies have developed and released 

open-source models for public access and use, represented by Llama models from 

Meta (formerly Facebook) and Qwen models from Alibaba. Given that, we selected 

multiple representative open- and closed-source models considering computing 

budget and time costs. For open-source models, we intentionally chose both the 

smallest (3B or 7B, in which B indicates billion parameters) and largest versions 

(70B or 72B) to test how the model size can affect evaluation results. The tested 

models in the final pool include: GPT-4o-mini (Achiam et al., 2023) from OpenAI, 

Llama 3.1-8B, Llama 3.2-3B, and Llama 3.3-70B from Meta (Dubey et al., 2024), 

as well as Qwen 2.5-7B and Qwen 2.5-72B from Alibaba (Yang et al., 2024). 

ICL for generative LLMs 

ICL is a prompt-engineering technique designed for generative LLMs (GPT-4o-

mini, Llama, and Qwen models in this paper). ICL works by providing contextual 

information, sometimes along with task-specific input-output pair demonstrations 

directly in the prompts, enabling models to generate responses for given questions. 

Unlike fine-tuning, ICL does not alter the model’s parameters; instead, it modifies 

the prompts to achieve more accurate outputs. This makes ICL a low-cost and user-

friendly approach to leveraging LLMs. In this study, we employed two of the most 

prevalent ICL prompting schemes: 

 Zero-shot (ZS) learning setting: In the ZS setting, the prompt only includes 

descriptions of the task as contextual information. The LLMs generate 

recommendations (Task 1) or ratings (Task 2) for each article without any 

additional contextual information. 

 Few-shot (FS) learning setting: In the FS setting, the prompt includes both the 

task description and five demonstrations of input-output pairs (see the 

Supplementary Material) for each class. For Task 1, five recommended articles 

and five non-recommended articles, along with their abstracts and expert 

recommendations, are provided. For Task 2, five articles from each rating 

                                                 
1 https://www.semanticscholar.org 
2 https://pubmed.ncbi.nlm.nih.gov 
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category (1, 2, and 3) are presented with their ratings. The demonstrations are 

selected randomly, and each inference is conducted using a different set of 

demonstrations. 

ICL is an idealized learning setting that anticipates LLMs to complete the tasks 

accurately with the given contextual information (task description) or a few 

samples. We designed three sets of prompt templates (p1-p3) for Task 1 and Task 

2 to instruct generative LLMs. The prompts and their corresponding usage for each 

task are provided in the Supplementary Material. 

Language model fine-tuning  

Fine-tuning is a model retraining method that adapts LLMs to specific tasks by 

updating their parameters using labelled data (in our case, the labels are article 

recommendations and ratings). Unlike training from scratch, fine-tuning can retain 

knowledge learnt during the pre-training stage in the retraining process. However, 

compared to ICL, fine-tuning, especially for generative LLMs, is much more 

computationally intensive. Additionally, fine-tuned models tend to be more task-

specific, which may reduce their generalizability. This strategy can be applied to 

both BERT models and generative LLMs. Due to the high computational costs of 

fine-tuning the selected generative LLMs on local machines, we only applied this 

learning setting for BERT models and the GPT-4o-mini model (through the OpenAI 

API). 

Validation metrics 

Four validation metrics were employed to measure the models’ performance in 

Task 1 and Task 2. The definitions and calculations are given as follows: 

 Accuracy (A): Accuracy measures the ratio of correctly classified articles to all 

articles. 

 Precision (P): For a specific category, P is the ratio of correctly classified articles 

to all articles predicted as positive for that class. 

 Recall (R): For a specific category, R is the ratio of correctly classified articles 

to all articles that belong to that class. 

 Cohen’s kappa coefficient (𝜿 ): 𝜅  measures the level of agreement between a 

LLM and a human expert on the classification task. It ranges from -1 to 1, with 

the larger value indicating higher agreement. 

𝜅 =
𝐴 − 𝑝𝑒
1 − 𝑝𝑒

 

𝑝𝑒 =
1

𝑁
∑𝑛𝐿

𝑘𝑛𝐻
𝑘

𝑘

 

𝑁 is the total number of articles and 𝑘  is the number of categories to be classified 

(recommended or not recommended in Task 1, rating of 1, 2, or 3 in Task 2), 𝑛𝐿
𝑘 

and 𝑛𝐻
𝑘 ,  respectively, denote the number of articles classified to category 𝑘  by 

LLMs (𝐿) and human experts (𝐻). Landis and Koch (1977) characterize values < 0 
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as indicating no agreement and 0-0.20 as slight agreement, 0.21–0.40 as fair, 0.41–

0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1 as almost perfect agreement. 

Results 

Results for high-quality article identification (Task 1) 

For the ICL strategies, we tested all generative LLMs on all articles in Task 1 (a 

total of 9,532 articles). The predictive results are shown in Figures 2 and 3, where 

the green and red areas represent the outputs recommended and not recommended 

respectively, and deep and light colors refer to articles correctly or wrongly 

classified (the sum of each bar may be slightly smaller than 9,532 due to a few 

invalid answers from LLMs).  

 

 

Figure 2. Model results using the ZS learning setting in Task 1. 

 

 

Figure 3. Model results using the FS learning setting in Task 1. 
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In both Figures 1 and 2, p1 refers to the prompt without evaluation criteria details 

given, and p2 refers to the prompt with evaluation criteria details (see the 

Supplementary Material). The accuracy, precision, and recall metrics for the 

generated answers are provided in Table 2. 

Under ICL settings, the overall accuracy of tested LLMs is around 0.6, which is 

barely satisfying for a binary classification task. It can be observed from Figures 2 

and 3 that most LLMs are inclined to generate biased positive answers 

(recommended) for articles – even though half of them did not receive any 

recommendations from human experts. This tendency is also reflected in the 

generally low recall rate for the “not recommended” class in Table 2. Besides, the 

performance of the closed-source model, GPT-4o-mini, does not show significant 

advancements compared to other open-source language models. 

Despite that, the model outputs are also subject to which prompt and what learning 

setting were used. In Figures 2 and 3, the accuracies of most models increase when 

changing the prompt from p1 to p2, i.e., using more detailed evaluation criteria in 

the prompt. Details of the evaluation criteria are essentially critical for LLMs to 

give more accurate justification for article recommendations. 

However, switching from ZS to FS setting, i.e., providing some examples to LLMs, 

does not let LLMs make more accurate recommendations. It increased the ratio of 

articles predicted as “not recommended”, but the accuracy did not improve 

accordingly. In other words, showing both positive and negative samples, i.e., 

articles recommended and not recommended by human experts to LLMs, can help 

them to produce more critical opinions, but the alignment with human experts still 

struggles. This indicates that article evaluation can be a complex and long content-

dependent task – realizing human-level judgment may still require a deeper 

understanding of articles than a few examples can provide.  

When comparing results from smaller versions of models to larger versions under 

ICL settings, the accuracies did not show significant improvements – in most cases, 

the accuracy dropped slightly. Although it has been proven that larger models can 

perform significantly better in most generalized tasks (Touvron et al., 2023; Yang 

et al., 2024), our results indicate that model size is not a decisive factor in this pure 

binary classification task of differentiating recommended and not recommended 

articles under ICL settings. 

The results of the fine-tuned models are presented in Table 2. Under the fine-tuning 

learning setting, both generative LLMs and BERT models are retrained to learn 

patterns for recommending articles from labelled data and then used to predict 

unseen records. We split the dataset into an 80% training set and a 20% test set. The 

optimal learning rate and number of training epochs were empirically determined 

by monitoring the training and validation loss.  
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Table 2. LLM results for Task 1 under ZS, FS, and fine-tuning learning settings*. 

Setting Prompt Model A 𝜿 P (Y) R (Y) P (N) R (N) 

ICL 

ZS 

p1 

Llama 3.1-8B 0.584 0.133 0.559 0.979 0.866 0.149 

Llama 3.2-3B 0.529 0.012 0.527 0.996 0.788 0.015 

Llama 3.3-70B 0.582 0.13 0.558 0.973 0.837 0.151 

Qwen 2.5-7B 0.630 0.235 0.593 0.936 0.805 0.293 

Qwen 2.5-72B 0.589 0.147 0.564 0.959 0.8 0.183 

GPT-4o-mini 0.596 0.160 0.567 0.960 0.816 0.194 

p2 

Llama 3.1-8B 0.607 0.186 0.576 0.946 0.798 0.234 

Llama 3.2-3B 0.568 0.099 0.55 0.966 0.775 0.130 

Llama 3.3-70B 0.587 0.14 0.561 0.969 0.827 0.166 

Qwen 2.5-7B 0.638 0.253 0.598 0.939 0.82 0.307 

Qwen 2.5-72B 0.609 0.191 0.577 0.948 0.804 0.237 

GPT-4o-mini 0.599 0.168 0.57 0.957 0.812 0.205 

FS 

p1 

Llama 3.1-8B 0.57 0.102 0.551 0.980 0.84 0.119 

Llama 3.2-3B 0.538 0.031 0.532 0.994 0.845 0.036 

Llama 3.3-70B 0.563 0.087 0.546 0.995 0.941 0.088 

Qwen 2.5-7B 0.625 0.24 0.618 0.745 0.637 0.493 

Qwen 2.5-72B 0.620 0.215 0.587 0.921 0.769 0.288 

GPT-4o-mini 0.597 0.164 0.568 0.96 0.818 0.198 

p2 

Llama 3.1-8B 0.595 0.163 0.572 0.902 0.703 0.256 

Llama 3.2-3B 0.564 0.095 0.551 0.913 0.651 0.179 

Llama 3.3-70B 0.578 0.118 0.557 0.969 0.808 0.144 

Qwen 2.5-7B 0.635 0.253 0.609 0.847 0.704 0.401 

Qwen 2.5-72B 0.609 0.19 0.579 0.931 0.77 0.253 

GPT4o-mini 0.597 0.164 0.57 0.946 0.782 0.213 

Fine-tuned on the 

training set (80% 

data) 

SciBERT 0.785 0.564 0.764 0.863 0.817 0.696 

BioBERT 0.789 0.574 0.778 0.845 0.804 0.725 

RoBERTa 0.761 0.512 0.726 0.885 0.825 0.62 

PubMedBERT 0.802 0.599 0.784 0.866 0.827 0.728 

GPT-4o-mini 0.84 0.679 0.878 0.811 0.802 0.872 

* Note: Results in bold font indicate the best accuracy, underlined results are the second 

best. We separated the comparison by experimental settings (ZS, FS and fine-tuning). 

 

The fine-tuned GPT-4o-mini achieved the highest accuracy among all models, 

including the fine-tuned BERT models, which utilize encoder-only architectures 

optimized for tasks like text understanding and classification rather than generation. 

This result highlights the superiority of larger-scale LLMs in handling versatile 

tasks and supports the scaling law in language models (Kaplan et al., 2020), which 

suggests that model performance improves to some extent with increasing size. 
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BERT models typically have around 110 million parameters, while GPT models 

often utilize models with billions of parameters. 

To compare the inter-model agreement on Task 1, we depicted the heatmap based 

on the pairwise 𝜅 of model outputs in Figure 4 – the darker the red, the higher the 

agreement is between the models. The overall agreement with human experts is the 

same as reflected by accuracy: Fine-tuned models are generally above 0.6 but 

models under the ICL settings are all lower than 0.3. Regarding the inter-model 

agreement, fine-tuned models show satisfying moderate agreements above 0.6, 

following the interpretation of Landis and Koch (1977). Notably, some models 

under the ICL settings also exhibit good inter-model agreement (above 0.6), 

including Qwen 2.5-72B, GPT-4o-mini, and Llama 3.3-70B, which are all LLMs 

in their larger versions. These results indicate that larger models may have more 

consistent behaviors when dealing with the less complicated Task 1. The results 

should be interpreted against the backdrop of results on the agreement of reviewers 

from the (pre-publication) peer review process. The results of a meta-analysis of 

Bornmann et al. (2010) including several primary journal peer review studies show 

that the agreement between reviewers assessing the same manuscript is low (in 

general): The pooled 𝜅 across 48 studies is 0.17. The results for the agreement of 

human experts and models are relatively high in this study compared to the results 

from the meta-analysis. 

 

 
Figure 4. The heatmap of 𝜿 between LLM outputs in Task 1. 
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Results for recommended article rating (Task 2) 

In Task 2, prompt p3 (see the Supplementary Material) was used to instruct LLMs 

to give ratings of 1, 2, and 3 for each article provided. The results are presented in 

Figure 5 and Table 3. In Figure 5, the colors represent three different ratings: Green 

– 1, Red – 2, and Yellow – 3 (the sum of each bar may be slightly smaller than 

15,000 due to a few invalid answers from LLMs). The overall low accuracy below 

0.4 highlights the challenge of differentiating article ratings under the ICL settings. 

Among the models, Qwen 2.5-72B achieved the highest accuracy but still presented 

a relatively biased preference for ratings of 2 and 3. Llama 3.1-8B within the FS 

setting yielded rather balanced predictions but suffered from lower accuracy. The 

other models, excluding Llama 3.1-8B and Llama 3.2-3B models under the FS 

setting, tend to show the inclination to ratings of 2 and 3. 

Unlike Task 1, switching from the ZS to the FS setting significantly altered the 

outputs of most models, but the direction of this change depends on which specific 

model is used: Llama 3.1-8B produced much more balanced results with the few 

samples provided, Llama 3.2-3B changed its main preference from ratings of 2 to 

1, results from Llama 3.3-70B did not change much, FS increases the number of 

ratings of 2 and 3 for Qwen 2.5-72B and GPT-4o-mini. However, the accuracy of 

all model outputs still did not improve much. Despite those changes, the results 

endorse our previous claim in Task 1: The regular FS learning setting is not an 

effective learning strategy for research evaluation tasks. 

 

 

Figure 5. LLM results for Task 2 under ZS and FS learning settings. 
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Table 3. LLM results for Task 2 under ZS, FS, and fine-tuning settings* 

 Setting Model A 𝜿 P1* R1* P2 R2 P3 R3 

ICL 

ZS 

Llama 3.1-8B 0.334 0.007 0.329 0.065 0.332 0.826 0.4 0.112 

Llama 3.2-3B 0.332 0.001 0.22 0.008 0.334 0.985 0.421 0.003 

Llama 3.3-70B 0.34 0.01 <1e-3 <1e-3 0.335 0.986 0.616 0.034 

Qwen 2.5-7B 0.373 0.059 1 <1e-3 0.338 0.633 0.43 0.485 

Qwen 2.5-72B 0.368 0.052 0.2 <1e-3 0.332 0.427 0.396 0.678 

GPT-4o-mini 0.364 0.047 0.286 0.019 0.333 0.658 0.434 0.417 

FS 

Llama 3.1-8B 0.336 0.005 0.335 0.502 0.329 0.245 0.347 0.262 

Llama 3.2-3B 0.331 0.002 0.332 0.952 0.333 0.038 0.349 0.003 

Llama 3.3-70B 0.337 0.006 0.750 0.001 0.334 0.991 0.602 0.019 

Qwen 2.5-7B 0.34 0.011 0.318 0.011 0.33 0.479 0.351 0.532 

Qwen 2.5-72B 0.371 0.057 0.392 0.07 0.337 0.77 0.51 0.272 

GPT-4o-mini 0.35 0.025 0.282 0.03 0.33 0.749 0.436 0.271 

  SciBERT 0.453 0.176 0.466 0.621 0.344 0.263 0.525 0.463 

Fine-

tuning 

Test set 

BioBERT 0.458 0.182 0.459 0.68 0.361 0.208 0.515 0.47 

RoBERTa 0.452 0.172 0.442 0.719 0.357 0.162 0.518 0.455 

PubMedBERT 0.461 0.187 0.464 0.68 0.361 0.231 0.527 0.456 

GPT-4o-mini 0.463 0.195 0.533 0.466 0.348 0.395 0.527 0.526 

 SciBERT 0.493 0.111 0.629 0.712 0.394 0.186 0.146 0.349 

Extra 

test set 

BioBERT 0.499 0.122 0.627 0.716 0.418 0.183 0.162 0.402 

RoBERTa 0.492 0.098 0.616 0.728 0.383 0.156 0.153 0.357 

PubMedBERT 0.512 0.14 0.635 0.715 0.453 0.23 0.158 0.361 

GPT-4o-mini 0.561 0.165 0.653 0.682 0.431 0.493 0.444 0.036 

* Note: P1 and R1 respectively refers to the precision and recall of category 1. Results in 

bold font indicate the best accuracy, underlined results are the second best. We separated 

the comparison by experimental settings (ZS, FS and fine-tuning). 

 

In addition to the standard test set, we created an extra test set for Task 2 to validate 

the performance of the fine-tuned models in real-world settings. The new test set is 

a dataset that simulates the imbalanced distribution of ratings in real-world 

scenarios – containing 1,675 records of rating 1, 1,076 records of rating 2, and 249 

records of rating 3. This corresponds roughly to a 8:5:1 ratio as introduced in the 

full dataset we collected. 

The results indicate that the fine-tuned GPT-4o-mini achieved the overall best 

performance on both test sets, especially on the extra real-world simulated test set. 

The second best-performing fine-tuned model is PubMedBERT, the BERT variant 
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trained specifically on PubMed articles corpora. Generally, all the language models 

tested on this task presented an accuracy lower than 0.6 and a 𝜅 agreement with 

human experts below 0.2. The low measures indicate that in Task 2, the differences 

between the three ratings are much more nuanced than in Task 1. It seems that Task 

2 is more challenging for language models to learn different articles’ quality based 

on their abstracts. 

The inter-model 𝜅 agreement of Task 2 is visualized in Figure 6. Compared to Task 

1, the agreement among fine-tuned models and models under ICL settings both 

dropped to lower than 0.6 and 0.2. Despite generally low agreement of LLMs under 

ICL settings, Qwen 2.5-72B and GPT-4o-mini still showed relatively high 

agreement with each other. 

 

 
Figure 6. The heatmap of 𝜿 between LLM outputs in Task 2. 
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Conclusions 

In this study, we performed a thorough comparison of current LLMs’ performance 

on research evaluation tasks under ICL (ZS and FS) and fine-tuning learning 

settings, providing insights into leveraging LLMs for post-publication review and 

rating. Overall, our results demonstrate that LLMs fine-tuned with partial human 

expert annotations can serve as a preliminary tool for initial research evaluation. 

However, more complicated tasks, like rating articles on a specific scale, are more 

challenging and may require more resources and sophisticated methodologies. 

More specifically, the key findings of this study are as follows: 

 Among the three model learning settings, fine-tuning works significantly better 

and aligns with expert opinions the most, but this comes with a trade-off of 

requiring a certain amount of existing training data. The idealized settings of 

utilizing LLMs, like ZS and FS, which anticipate LLMs to perform evaluation 

independently or with very limited contextual information, are still compromised 

in their alignment with human experts in real-world practice. 

 Among the fine-tuned models, GPT-4o-mini is the best among the tested LLMs, 

including BERT-based models and open-sourced generative LLMs. 

 Under the fine-tuning setting, LLMs can offer relatively satisfying performance 

on identifying high-quality articles (Task 1) with very little training data but may 

struggle to accurately rate recommended articles (Task 2). The selected LLMs, 

even after fine-tuning, are still prone to giving biased answers that are different 

from those of human experts. 

Limitations and future directions 

Certain limitations come with this work. First, we did not apply fine-tuning 

strategies on open-source LLMs like Qwen and Llama due to the restraints from 

high computational resource requirements, leading to the lack of comparison of 

those options in our study. Second, in this paper, we only fed article abstracts to 

LLMs for evaluation, which contain very concise and limited information and may 

be insufficient for evaluating the overall quality of research articles. Third, LLMs 

are the only knowledge sources for performing research evaluation tasks. No 

external data sources, which can be academic knowledge graphs containing more 

enriched information, have been leveraged. Aiming to equip LLMs with better 

capabilities and accuracy of research evaluation, the future directions of this study 

will spread to three perspectives: (1) employ more computational resources to 

realize fine-tuning on open-source LLMs, (2) develop a work pipeline for multi-

modal LLMs to systematically process article full texts with figures and tables 

affiliated, and (3) incorporate external data resources with LLMs to realize enriched 

context-aware evaluation. 
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Supplementary Material 

 

Prompt for Task 1 

p1 (used for ZS and fine-tuning): 

You are an academic expert in the biomedical field, evaluating research articles 

based on scientific rigor, replicability, data analysis, and study limitations. You will 

summarize each article as “recommend” or “not recommend” by reading the 

abstracts. 

Reply with 1 for recommending this article and 2 for not recommending it. 

Reply with 1 or 2 and nothing else. 

p2 (used for ZS and fine-tuning): 

You are an academic expert in the biomedical field, evaluating research articles 

based on scientific rigor, replicability, data analysis, and study limitations. You will 

summarize each article as “recommend” or “not recommend” by reading the 

abstracts. 

- Scientific rigor is the strict application of the scientific method to ensure 

robust and unbiased experimental design, methodology, analysis, 

interpretation and reporting of results. 

- Replicability is obtaining consistent results across studies aimed at 

answering the same scientific question, each of which has obtained its own 

data. 

- Data analysis is the practice of working with data to glean useful 

information, which can then be used to make informed decisions. 

- Study limitations are the constraints placed on the ability to generalize from 

the results, to further describe applications to practice, and/or related to the 

utility of findings that are the result of the ways in which you initially chose 

to design the study, or the method used to establish internal and external 

validity or the result of unanticipated challenges that emerged during the 

study. 

Reply with 1 for recommending this article and 2 for not recommending it. 

Reply with 1 or 2 and nothing else. 

Additional FS demonstrations: 

Here are some examples from human expert recommendations: 
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Prompt for Task 2 

p3 (used for rating classification) 

You are an academic expert in the biomedical field, evaluating research articles 

based on scientific rigor, replicability, data analysis, and study limitations. The 

definitions of the evaluation dimensions are as follows: 

- Scientific rigor is the strict application of the scientific method to ensure 

robust and unbiased experimental design, methodology, analysis, 

interpretation and reporting of results. 

- Replicability is obtaining consistent results across studies aimed at 

answering the same scientific question, each of which has obtained its own 

data. 

- Data analysis is the practice of working with data to glean useful 

information, which can then be used to make informed decisions. 

- Study limitations are the constraints placed on the ability to generalize from 

the results, to further describe applications to practice, and/or related to the 

utility of findings that are the result of the ways in which you initially chose 

to design the study, or the method used to establish internal and external 

validity or the result of unanticipated challenges that emerged during the 

study. 

You will summarize your rating using 1, 2, or 3, representing "Good," "Very Good," 

and "Exceptional" quality. Just reply with 1, 2, or 3 and nothing else. 

Additional FS demonstrations: 

Here are some examples from human expert recommendations: 

 


