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Abstract 

We integrate two bibliometric frameworks—the Disruption Index (DI) and Main Path Analysis 
(MPA)—to examine how scientific papers shape knowledge flows in scientometrics. The DI 

measures a paper's capacity to shift citation patterns: a positive DI indicates the paper “diminishes” 

its predecessors (disruptive impact), while a negative DI suggests it reinforces prior work 

(consolidative impact). The MPA identifies dominant knowledge trajectories by extracting the most 

frequently traversed citation paths within a field, highlighting papers critical for sustained knowledge 

transmission. Analyzing 36,523 scientometrics publications, we find papers on main paths exhibit 

lower disruption, with disruption declining further over time. It aligns with MPA’s tendency to 

amplify consensus-driven knowledge. Disruptive papers (DI>0) are less likely to appear on main 

paths, suggesting alternative diffusion pathways. Besides, indirect impact metric (SPX) is positively 

associated with direct impact (citation counts) but negatively correlated with disruption. Our research 

shows that MPA may underrepresent disruptive contributions, necessitating complementary DI/SPX 
evaluation. 

Introduction 

Information scientists aim to use citation relationships to identify impactful scientific 

papers. Citation count is the most common evaluation metric for its simplicity and 

intuitiveness. However, it overlooks the complex information within citation 

structures (Bu, Waltman, & Huang, 2021). Recently, the disruption index (DI) 

proposed by Funk and Owen-Smith (2017) has garnered significant attention (Wu, 

Wang, & Evans, 2019; Park, Leahey, & Funk, 2023; Lin, Frey, & Wu, 2023; H. Li, 

Tessone, & Zeng, 2024). Unlike citation count, DI focuses on measuring the nature 

of a paper’s impact (Leahey, Lee, & Funk, 2023). It assesses a paper’s influence 

based on how it disrupts existing citation patterns: when subsequent papers cite a 

focal paper (FP) but do not acknowledge FP’s references, FP disrupts its field; 

conversely, FP consolidates the field’s development (Azoulay, 2019). In other words, 

the FP’s brilliance captures the attention of successors and dims its predecessors. 

Scholars have examined DI’s validity through expert evaluations (Bornmann & 

Tekles, 2019; Bornmann et al., 2020a, 2020b). Some researchers explored Nobel 

Prize-winning papers, which often have both high DI values and citation 

counts(Liang, Lou, & Hou, 2022). These two metrics, reflecting the nature and level 

of impact, provide a two-dimensional evaluation framework (Wei, Li, & Shi, 2023). 

In this framework, most papers contrast with Nobel Prize-winning works, exhibiting 

lower citation counts and DI values. The remaining papers fall into two categories. 

A high DI value does not equate to a significant impact, as these papers might receive 

fewer citations. Conversely, highly cited papers may not possess high DI values. 

Review articles exemplify this, as they primarily integrate existing knowledge. 
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These combinations capture our interest, the two with high impact levels. Citation 

relationships represent a form of knowledge flow, and the DI measures how FPs 

disrupt this flow. Papers with high citation counts often play crucial roles in 

knowledge flow and tend to cluster along the main paths of citation networks. 

Scholars have analyzed these main paths to map the development of fields (Hummon 

& Dereian, 1989) and identify foundational papers (Ma & Liu, 2016). However, 

these studies often overlook whether the knowledge flow reflects disruption or 

integration. Introducing DI can help us analyze how papers on the main paths 

contribute to knowledge flow within specific fields. 

We have additional motivation for using main path analysis (MPA). While citation 

count reflects the direct impact of a paper, it fails to capture indirect influence. MPA 

offers a complementary measure (Liu, Lu, & Ho, 2019). Furthermore, both the DI 

and MPA consider FP’s citing and cited papers, aligning them conceptually. The DI 

focuses on local network structures, whereas MPA utilizes global information. 

Integrating network information may better measure a paper’s impact, allowing us 

to develop a three-dimensional evaluation framework. Given the rapid growth in 

scientific publications, using larger datasets to represent specific research fields is 

essential but challenging. MPA can guide us in focusing on a subset of papers that 

can effectively represent the core of the research field. 

We select scientometrics as a case study to address the following research questions. 

First, do papers on the main paths exhibit higher disruption? Do the disruptive papers 

tend to appear on the main paths? Second, is the indirect impact measure associated 

with MPA consistent with other paper evaluation metrics? 

Literature Review 

Disruption Index (DI) 

Researchers have conducted in-depth discussions on the DI. Here we only provide a 

brief overview of this index. We can refer to Leibel and Bornmann (2024) for a more 

detailed one. To facilitate subsequent elaboration, we first introduce the regular form 

of this index.  

 

 

Figure 1. Illustration for DI. 

 

In Figure 1, for an FP, we focus on its references and citing papers. It has four 

references (gray rectangles). The six citing papers (rectangles below) are in three 
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parts: those citing only the FP (green, denoted as 𝑖), those citing both the FP and its 

references (yellow, denoted as 𝑗), and those citing only its references (red, denoted 

as 𝑘). The DI value for the FP is the difference in proportion between the 𝑖 and 𝑗, i.e., 

𝐷𝐼 = 𝑝𝑖 − 𝑝𝑗 =
𝑛𝑖 − 𝑛𝑗

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘
∈ [−1,1] 

We consider 𝐷𝐼 = 0 as a threshold. 𝐷𝐼 > 0 indicates the paper is disruptive, while 

𝐷𝐼 < 0 suggests it is consolidating. Additionally, we should determine the number 

of citing papers, which requires setting an appropriate citation window. 

The first type of research examines the DI mechanism. Leydesdorff and Bornmann 

(2021) argue that the DI relies on bibliographic coupling, where the coupling of the 

FP and its references signifies continuity, while disruption indicates a break in 

continuity. Lin, Evans, and Wu (2022) suggest that disruptive papers often achieve 

breakthroughs in theory, methods, or discoveries compared to their references. 

Further discussions on improvements are in two factions. One faction views the DI 

as a relative measure, considering disruption and integration as opposing concepts. 

The other treats it as an absolute measure, calculating disruption and integration 

separately (Chen, Shao, & Fan, 2021; Leydesdorff, Tekles, & Bornmann, 2021). 

Current research focuses more on the former approach. Since many 𝑘-type papers 

can skew the DI value towards zero, Bornmann et al. (2020b) propose setting a 

bibliographic coupling threshold to reduce the number of 𝑘-type papers. Deng and 

Zeng (2023) suggest severing links between citing papers and highly cited references 

to increase the number of 𝑖-type papers. Both methods adjust the DI value. Ruan et 

al. (2021) note that fewer references negatively impact the DI value and recommend 

focusing only on FPs with more than ten references. Yang et al. (2024) systematically 

review the shortcomings of the DI and offer more reasonable modifications. Yang et 

al. (2024) also propose disruptive citations to measure a paper’s absolute disruptive 

impact. 

Validation work relies on specific datasets, including milestone paper lists published 

by Physical Review Letters in physics (Bornmann & Tekles, 2021) and peer review 

results from F1000Prime in biology and medicine (Bornmann et al., 2020b). A 

notable validation effort is Macher, Rutzer, and Weder’s rebuttal (2024) of Park, 

Leahey, and Funk’s conclusions (2023), highlighting that truncating the citation 

window can lead to biased results. 

The second type of research examines how research activities impact the papers’ 

disruption. Lyu et al. (2021) show that team size and international collaboration 

negatively correlate with the papers’ DI value. Zeng et al. (2021) report a positive 

correlation between new teams and the papers’ disruption. Wang et al. (2023) reveal 

that scientists in structural holes within collaboration networks are more likely to 

publish disruptive papers. Zhao et al. (2024) note that teams with more thought 

leaders produce less disruptive ideas. Another set of studies investigates the impact 

of interdisciplinary collaboration on paper disruption. Liu et al.’s empirical results 

(2024) indicate that collaboration within the same discipline is more likely to 

produce disruptive outcomes, while Chen et al. (2024) present research with opposite 

conclusions. Other influencing factors include funding types (Yang & Kim, 2023) 

and prior knowledge (Sheng et al., 2023). 
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The third type of research expands the DI application scenarios. Scholars use it for 

scientific evaluation, applying it to papers (Zhou et al., 2022; Wang et al., 2024; Yan 

& Fan, 2024a), scientists (Wang, Zhou & Zeng, 2023; Yang et al., 2023), and 

journals (Jiang & Liu, 2023). 

Overall, researchers primarily focus on the first type of research. Future research 

may explore using textual information to measure paper’s disruption and enhance 

the utilization of this index. 

Main Path Analysis (MPA) 

MPA is a classical network method that considers citation relationships as 

knowledge flows, tracing the most significant dissemination paths within a field. It 

involves two steps: calculating the traversal weights of links and extracting the paths 

with the highest weights. Current research focuses on methodological improvements 

to achieve more interpretable results. 

Early explorations focus on network topology. Hummon and Dereian (1989) 

establish the foundation for MPA by proposing three traversal weight methods: Node 

Pair Projection Count (NPPC), Search Path Link Count (SPLC), and Search Path 

Node Pair (SPNP). Batagelj (2003) introduces the Search Path Count (SPC), which 

balances inflow and outflow traversal weights. Although SPC was initially popular, 

Liu, Lu, and Ho (2020) conclude that SPLC better suits the knowledge dissemination 

context after comparing the four methods. In path searching, Liu and Lu (2012) 

propose the main paths: local, global, and key-route. Additionally, Pajek (Everton et 

al., 2018) significantly contributes to disseminating MPA, offering researchers 

convenience. Researchers also explore other perspectives. For instance, Liu and 

Kuan (2016) examine the decay of knowledge during the flow process, Jiang, Zhu, 

and Chen (2020) address MPA’s limitations in self-loop networks, Ho, Liu, and 

Chang (2017) investigate the impact of review papers on generating main paths, and 

Kuan analyzes MPA’s tendency toward long path results (2023), proposing 

quantitative methods to evaluate main paths (Kuan & Liao, 2024). 

Subsequent studies emphasize the integration of semantic information. For example, 

Chen et al. (2022) introduce link semantic weights to improve paths thematic 

coherence. Yan and Fan (2024b) incorporates knowledge graphs to enhance the 

knowledge proximity of path nodes. Additionally, Liu, Lu, and Ho (2019) suggest 

using link traversal weights to measure the indirect influence of papers within a field, 

although this idea has received limited attention. 

Methods 

Data Collection and Network Construction 

Constructing a citation network includes two steps: determine the paper set in 

scientometrics and obtain citation relationships (their references and citing papers). 

We have two accessible data sources: Web of Science (WoS) and OpenAlex (Priem, 

Piwowar, & Orr, 2022). 

For the first step, Bornmann and Tekles (2019b) select papers from Scientometrics 

to represent this field. Both WoS and OpenAlex offer a retrieval tool that uses the 
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Leiden algorithm (Traag, Waltman, & Van Eck, 2019) to cluster papers and assign 

category labels, which facilitates our research. Therefore, we obtain data separately 

and compare them. The strategy is in Table 1.  

 
Table 1. Retrieval strategy for papers in scientometrics. 

Source  Strategy 

WoS Query TMSO= (6.238 Bibliometrics, Scientometrics & 

Research Integrity)  

 Index SCI & SSCI 

 Document Article & Review 

 Date 2024-12-18 

 Records 40,500 

OpenAlex Query Topic is “scientometrics and bibliometrics research” 

 Document  Article & Review 

 Records 51,690 

 

The results show that OpenAlex provides more data, and only 8,029 entries overlap, 

indicating significant differences. Merging the two datasets is feasible, but we are 

concerned that it could introduce more noise. Therefore, we manually check some 

classic papers in scientometrics. For instance, in “An index to quantify an 

individual’s scientific research output,” Hirsch proposed the famous h-index (2005). 

However, OpenAlex categorizes this paper under “Cognitive Science and Mapping.” 

Clustering algorithm may bring noise especially when the data is large and complex. 

Considering the data quality, we prefer the WoS data. We also acknowledge the 

limitation of the manual review, conducting experiments separately may be a better 

choice.  

For the second step, we choose the OpenAlex data. First, early papers often have 

limited references, and WoS does not index them. It may affect the DI value of papers. 

Additionally, WoS does not provide bulk access to forward citations, making it 

challenging to construct a complete network when the FP set is large. However, 

OpenAlex assigns universal identifiers (OpenAlex ID) and provides powerful APIs, 

overcoming the shortcomings abovementioned. 

Overall, we finally adopt a mixed strategy: WoS provides focal paper set and 

OpenAlex offers citation relationships. 

The comparison between WoS and OpenAlex data is in Table 2. For the 40,500 

records, OpenAlex indexes most of them. Besides, OpenAlex covers 70% of the 

reference data for WoS and provides more references. 
 

Table 2. Data Comparison between WoS and OpenAlex. 

 WoS OpenAlex Shared 

Records 40,500 40,182 40,182 

Reference Items 267,803* 384,627 187,398 

References 757,379 1,171,004 553,012 

* Only 258,580 items exist in OpenAlex. 
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We have two citation networks in this study. First, we utilize complete data to 

construct a full network. Here, we select a portion of the 40,182 original records with 

at least one reference for the FP set. It covers 676,140 nodes and 6,568,462 edges. 

We also build a close network which only retains citations where both sides belong 

to the FP set (Li & Chen, 2022). The illustration is in Figure 2. Such an approach 

reflects knowledge flow within scientometrics, aligning with the strategy used in 

MPA studies. Table 3 shows the minor differences between the two close networks. 

 
Table 3. Close network comparison between WoS and OpenAlex version. 

 WoS OpenAlex Shared 

Nodes 35,319 36,523 33,438 

Edges 388,588 376,958 349,561 

 

 

 

Figure 2. Illustration for close network construction. 

 

Evaluation Metrics 

The metrics we select to evaluate paper’s impact are in Table 4. 

 
Table 4. Evaluation metrics. 

Dimension Metrics Illustration 

Level 𝐼10 Citation counts within a 10-year citation window.  

 𝐼2024𝑦  Citation count received until 2024. 

Nature 𝐷𝐼10 DI within 10-year citation window. 

 𝐷𝐼2024𝑦  DI values in 2024. 
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Main Path Analysis with Indirect Impact Metrics 

We choose SPLC to calculate citation traversal count because this is more consistent 

with the representation of knowledge flow (Liu, Lu, & Ho 2019). We use multiple 

methods integrated in Pajek to extract the main paths for comprehensive results (Liu 

& Lu, 2012). We accomplish the task only on the close network to reduce bias 

(Filippin, 2021). 

We also refer to the method provided by Liu, Lu, and Ho (2019) to measure the 

paper’s indirect impact. Each FP has 𝑛 citation links whose sum of citation traversal 

counts is 𝑠, and its indirect impact is 𝑆𝑃𝑋 =
𝑠

𝑛
. The illustration is in Figure 3. 

 

 

Figure 3. Illustration for MPA and SPX metrics. 

 

Results 

Network Description 

In the citation network, the in-degree represents the citation count, and the out-degree 

represents the number of references. Figure 4 illustrates the logarithmic distribution 

of the FPs in the two networks. 
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Figure 4. Citation and reference distribution in the two networks. 

 

Most papers have less than 10 citations, while a few obtain extremely high impact. 

Hirsch’s proposal on the h-index receives significant attention in the close network. 

In the full version, Van Eck and Waltman (2010) have the highest impact with the 

introduction of VOSviewer. One likely reason is that VOSviewer has become 

fundamental to scientometrics, leading researchers in the field to choose not to cite 

it. The distribution of reference is more concentrated in the upper range. Earlier 

papers tend to have fewer references, and OpenAlex may not fully index them. The 

paper with the most references is a 2008 review by Bar-Ilan (2008). In the full 

network, some nodes with numerous references, such as “Quantitative Studies of 

Science: A Current Bibliography” (ID “W2135332121”), appear. OpenAlex 

sometimes provides extensive but incorrect reference relationships for these nodes, 

introducing noise into the network. 
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Park et al. suggest that the current decline in the disruption of papers may be due to 

researchers bearing a heavier knowledge load (2023). Figure 5 presents a box plot 

showing the distribution of reference counts for FPs published from 1955 to 2024. 

Over time, researchers in scientometrics have consulted more literature. 

 

 
Figure 5. Reference distribution over years in the full network. 

 

We examine the temporal distribution of citation behaviour. Figure 6 illustrates that 

most FPs derive insights from works published within the last decade and receive 

citations within ten years of publication. The citation window influences both the 

citation count and disruption. Thus, setting the ten-year window is more proper in 

this context. 

 

 

Figure 6. Average reference and citation age distribution in the two networks. 
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Disruption Distribution 

 

Figure 7. Distribution of 𝑫𝑰𝟏𝟎 values in the close network. 

 

 

Figure 8. Distribution of 𝑫𝑰𝟏𝟎 values in the full network. 
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Figure 7 illustrates the distribution of 𝐷𝐼10 for papers published in the close network 

from 1955 to 2014. A total of 1088 nodes are absent due to a denominator of zero. 

The main part is a hexbin plot, where each hexagonal area corresponds to a specific 

publication year and 𝐷𝐼10 value, with colour indicating the density of papers. Most 

papers have 𝐷𝐼10 values concentrated around zero. The histogram in the lower left 

corner reflects a similar trend, with over 40% of papers having a 𝐷𝐼10 value of zero. 

The line graph depicts the average 𝐷𝐼10 value per year, suggesting that the field of 

scientometrics is experiencing a decline in disruption. Figure 8 presents a similar 

picture, showing even lower annual average 𝐷𝐼10  values and a more extreme 

distribution. 

In the close network, we see variations in 𝐷𝐼10  values. Figure 9 illustrates this 

dynamic. Red nodes have higher 𝐷𝐼10 values in the full network, while blue nodes 

appear more disruptive in the close network. Blue nodes in the grey area show 

extremely high 𝐷𝐼10  values, indicating that the structure of the close network 

significantly impacts these measurements. 

 

 
Figure 9. Distribution of 𝑫𝑰𝟏𝟎 difference between the two networks. 

 

 
Figure 10. Distribution of 𝑫𝑰𝟏𝟎 and 𝑰𝟏𝟎 values for papers with 𝑰𝟏𝟎 = 𝟏 or 𝑫𝑰𝟏𝟎 = 𝟎. 
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We combine 𝐼10 and 𝐷𝐼10 metrics to analyze paper impact. Previous results indicate 

that many papers receive few citations or exhibit low disruption. We select papers 

with only one citation or a 𝐷𝐼10 of zero. In Figure 10, the red histogram shows that 

most papers with a single citation have 𝐷𝐼10 values near zero. However, over four 

hundred papers exhibit extremely high 𝐷𝐼10 values in the close network. Similarly, 

the blue histogram indicates that many papers have an 𝐼10 less than 5, with the rest 

being outliers. 

 

 

Figure 11. Distribution of 𝑫𝑰𝟏𝟎 and 𝑰𝟏𝟎 values for papers with 𝑰𝟏𝟎 in the top 20% or 

𝑫𝑰𝟏𝟎 > 𝟎. 

 

We then examine papers with high impact. The red plot illustrates the 𝐷𝐼10 

distribution for papers in the top 20% of the 𝐼10 (thresholds: close = 14, full = 40). 

Most papers have 𝐷𝐼10 values clustered around zero, with a sizable proportion below 

0. We also analyze the papers with 𝐷𝐼10 > 0, which typically rank in the lower 80% 

of the 𝐼10. Table 5 further demonstrates this negative correlation. It is insignificant 

when the threshold is Top 1% and 5%. Figure 12 shows that a few outliers have both 

high impact and disruption. 
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Table 5. Negative correlation between 𝑰𝟏𝟎 and 𝑫𝑰𝟏𝟎. 

Network Range (Top %) Threshold Sample Correlation p-value 

Close 1% 89 159 -0.162 p=.041 

 5% 39 809 -0.115 p<.01 

 10% 25 1653 -0.155 p<.001 

 20% 14 3375 -0.170 p<.001 

 100% 0 15701 -0.04 p<.001 

Full 1% 255 159 -0.105 p=.187 

 5% 107 800 -0.067 p=.059 

 10% 69 1587 -0.12 p<.001 

 20% 40 3195 -0.16 p<.001 

 100% 0 15701 -0.298 p<.001 

 

 

Figure 12. Distribution of 𝑫𝑰𝟏𝟎 values for papers with 𝑰𝟏𝟎 in the top 1%. 

 

Main Paths 

We utilize Pajek to obtain five main paths with SPLC as the traversal count indicator 

and different selection methods. The main paths overlap and include 147 papers in 

total. Table 6 provides an overview. Diversity appears in the local forward path. 
 

Table 6. Overview to main paths. 

Main Paths Parameter Nodes Unique 

Global Standard / 79 0 

Local Backward Tolerance=0.2 83 0 

Local Forward Tolerance=0.2 100 10 

Local Key-route Paths=1-20 130 3 

Global Key-route Paths=1-20 93 2 

 

We merge the main paths for analysis. Table 7 shows the topics in different periods. 

From 1961 to 1983, early studies explored scientists’ resistance to discoveries and 
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Matthew’s effect on science. Co-citation analysis stood out in 1973 and ignited 

subsequent research in the 1980s. In 1991-2007, scholars discussed the journal’s 

impact and research trends in the specific discipline. The third period enriched the 

knowledge in evaluating citation and journal impact. New indicators like success 

index and t-factor introduced new informetrics models. In the next period, scientists 

turned to bibliographic databases. They compared Scopus and WoS to analyze the 

data quality. Discussions on open platforms like Microsoft Academic Graph and 

Open Citations were also remarkable. We do not mention the last period because the 

relevant papers are not representative. In other words, they may not reflect the 

leading development of scientometrics in the last two years. A probable reason is the 

limitation of the MPA method itself. It relies on a sufficient citation window to 

determine the appropriate papers that appear on the main paths. 

 
Table 7. Topics in the different periods of the main paths. 

Period Main Topic Count 

1961-1987 Co-citation analysis 31 

1991-2007 Empirical studies with bibliometrics methods 18 

2008-2016 Evaluation metrics 43 

2016-2022 Bibliographic database 38 

 

Figure 13 presents the DI value of papers along the main paths. Since only 86 papers 

appeared before 2015, we include 𝐷𝐼5 for papers published up to 2019, enabling a 

more comprehensive discussion. The final dataset comprises 118 papers. 𝐷𝐼2024𝑦  

represents the most recent DI value. Each color block corresponds to a single paper, 

arranged chronologically with ten papers per row. Red indicates 𝐷𝐼 > 0 , blue 

represents 𝐷𝐼 < 0, white denotes 𝐷𝐼 = 0, and grey signifies the absence of a DI 

value for the paper. The results show that most papers have 𝐷𝐼 < 0, while papers 

with 𝐷𝐼 > 0 cluster in the earlier years. 

 
Figure 13. Distribution of 𝑫𝑰 values in different formats. 
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Additionally, we compare each paper with others published in the same year. Figure 

14 demonstrates that all papers on the main paths exhibit 𝐷𝐼5 values higher than the 

annual average and median. However, this trend reverses significantly in 𝐷𝐼10 . 

Regarding 𝐼5  and 𝐼10 , papers on the main paths perform well within the close 

network but do not show a distinct advantage in the full network. One explanation is 

that some papers outside the main paths contribute to other fields. 

 

 

Figure 14. Comparison between papers on the main paths and others published in the 

same year. 

 

The decline in values from 𝐷𝐼5 to 𝐷𝐼10 catches further attention. Table 8 highlights 

this trend. Within the close network, all papers display a consistent decrease, while 

in the full network, some papers maintain higher DI values even 10 years after 

publication. The probable reason is that researchers from other fields adopt 

knowledge from scientometrics. 

 
Table 8. Distribution of papers on the main paths with different relations on 𝑫𝑰𝟓 and 

𝑫𝑰𝟏𝟎. 

Relation Close Full 

𝐷𝐼10 < 𝐷𝐼5 86 54 

𝐷𝐼10 = 𝐷𝐼5 0 1 

𝐷𝐼10 > 𝐷𝐼5 0 31 

 

The papers on the main paths represent only a tiny fraction of the FPs. To broaden 

the scope of our analysis, we employ 𝑆𝑃𝑋, which measures a paper’s contribution to 

knowledge flow within the citation network and reflects its indirect impact. Table 9 

reports the Spearman correlation between 𝑆𝑃𝑋, 𝐷𝐼, and 𝐼. To account for temporal 

variations, we apply different time windows, resulting in three groups of papers. The 

findings are significant and robust across the two networks, indicating a negative 

correlation between 𝑆𝑃𝑋 and 𝐷𝐼, while 𝑆𝑃𝑋 shows a positive correlation with 𝐼. 
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Table 9. Spearman correlation between 𝑺𝑷𝑿, 𝑫𝑰, and 𝑰. 

Group Sample Variable Close Full 

1955-2014 12,197 𝐷𝐼5 -0.103*** -0.244*** 

  𝐷𝐼10 -0.132*** -0.246*** 

  𝐷𝐼2024𝑦  -0.147*** -0.216*** 

  𝐼5 0.524*** 0.356*** 

  𝐼10 0.512*** 0.353*** 

  𝐼2024𝑦  0.568*** 0.438*** 

1955-2019 20,338 𝐷𝐼5 -0.176*** -0.252*** 

  𝐷𝐼2024𝑦  -0.199*** -0.234*** 

  𝐼5 0.507*** 0.367*** 

  𝐼2024𝑦  0.540*** 0.420*** 

1955-2024 32,042 𝐷𝐼2024𝑦  -0.210*** -0.223*** 

  𝐼2024𝑦  0.200*** 0.200*** 

*** 𝑝 < .001 

 

We further analyze papers with 𝐷𝐼 > 0  to explore the relationship between 

disruption and main path membership. Table 10 reveals that the negative correlation 

remains statistically significant.  

 
Table 10. Negative correlation between 𝑺𝑷𝑿 and 𝑫𝑰. 

Variable Time Span Close Sample Full Sample 

𝐷𝐼5 1955-2019 -0.183*** 6084 -0.144*** 6901 

𝐷𝐼10 1955-2014 -0.144*** 4973 -0.109*** 4974 

𝐷𝐼2024𝑦  1955-2024 -0.232*** 9967 -0.190*** 12511 

*** 𝑝 < .001 

 

We employ the Monte Carlo simulation method to validate this observation, 

randomly assigning the “main path member” label while keeping the publication 

year constant. This approach allows us to simulate expected values under an 

unbiased condition. Figure 15 illustrates a consistent trend across all disruption 

metrics (𝐷𝐼5, 𝐷𝐼10, and 𝐷𝐼2024𝑦): the participation rate of highly disruptive papers 

in the main paths is consistently lower than the random baseline. 



1317 

 

 

Figure 15. Participation of papers with 𝑫𝑰 > 𝟎 on the main paths in the two 

situations. 

 
Table 11. Statistic results for the validation experiment. 

Variable Time Span Close OR (95%CI) Full OR (95%CI) 

𝐷𝐼5 1955-2019 p<.001 0.388 p<.001 0.203 

𝐷𝐼10 1955-2014 p<.001 0.225 p<.001 0.187 

𝐷𝐼2024𝑦  1955-2024 p<.1 0.691 p<.01 0.582 

 

Additionally, the close and full networks exhibit similar patterns, suggesting that the 

observed results are independent of the citation network construction strategy. This 

trend demonstrates robustness across different network configurations. Table 11 

provides detailed statistical evidence, showing that, except 𝐷𝐼2024𝑦  (𝑝 = .06 in the 

close network and 𝑝 = .002 in the full network), the p-values for all other metrics 

are below 0.001. 

In summary, we conclude that disruptive papers are significantly less likely to appear 

on the main paths. 
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Discussion and Conclusion 

We analyze two metrics, 𝐼 and 𝐷𝐼, to examine papers in the scientometrics, with a 

particular emphasis on those situated on the main paths. Overall, papers on the main 

paths tend to exhibit lower disruption and demonstrate stronger consolidative 

tendencies over time. A comparative analysis with papers published in the same year 

reveals that this downward trend in disruption is significant. At the same time, these 

papers consistently show higher 𝐼 values. However, their advantage in 𝐼 diminishes 

when considering the attention from other fields. 

Let us review the formula of the disruption: 

𝐷𝐼 =
𝑛𝑖 − 𝑛𝑗

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘
 

Here, j-type papers, which cite both the FP and the references of the FP, contribute 

directly to a negative impact on disruption. We hypothesize that the coupling 

relationships among main path members play a key role in reducing disruption. 

Figure 16 provides evidence for this hypothesis. For each 𝑗-type descendant of a 

paper, we identified 𝑏-type papers that cite both the FP and other members of the 

main paths. We then calculate the proportion of 𝑏-type papers within the 𝑗-type set. 

The results indicate that 𝑏-type papers significantly increase the number of 𝑗-type 

papers, thereby reducing DI values. 

 

 

Figure 16. Proportion of 𝒃-type within 𝒋-type papers for the members of the main 

paths. 

 

We introduce the SPX to examine the relationship between direct impact, indirect 

impact, and disruption. Our findings show that indirect impact is positively 

correlated with direct impact, while both negatively correlate with disruption. 

The top 1% of highly influential papers form a distinct group. The sample size (𝑛 ∈
(100,350) , depending on the time window) influences the robustness and 

significance of these correlations. For example, outliers with high influence and high 

disruption weaken the observed negative correlation. Similarly, some papers with 

exceptionally high impact fail to achieve high SPX values. This discrepancy arises 



1319 

 

because network structure is critical in determining SPX values. Notably, the 

correlations regain statistical significance when we set the threshold from the top 1% 

to the top 5%. Future studies could investigate their topics and citation patterns to 

provide deeper insights into their unique characteristics. 

On the other hand, we specifically focus on FPs with 𝐷𝐼 > 0, where their SPX values 

demonstrate a consistently stable negative correlation with DI. Statistical analyses 

further indicate that disruptive papers are less likely to be part of the main paths. 

Our study provides a multidimensional evaluation framework. It can bring a more 

comprehensive understanding of how papers contribute to scientific progress. Future 

research could further investigate it across different disciplines. 

In addition, we focus on analyzing papers along the main path. The main path 

mechanism prioritizes and amplifies conventional scientific achievements, creating 

a “highway” for knowledge diffusion. In contrast, disruptive papers are more likely 

to spread through smaller, less prominent paths, suggesting a divergence in the 

dissemination patterns of traditional and disruptive contributions. 

This study also offers two practical recommendations. First, we propose giving 

greater attention to non-mainstream breakthroughs when assessing the impact of 

papers, as these contributions may represent emerging or unconventional 

advancements. Second, main path analysis may not be the suitable tool for 

identifying disruptive technological frontiers, given its inherent focus on established 

knowledge trajectories. 

There still exist certain limitations. It is difficult to reduce noise in the dataset like 

incorrect citation relationships and papers that do not belongs to scientometrics, 

which may affect identifying the main paths. Besides, we only adopt SPLC as the 

link traversal algorithms, introducing advanced approaches could help optimize the 

results. Additionally, the SPX indicator covers only about 90% of the nodes, as 

calculating SPLC values in Pajek requires selecting the largest subnetwork. Future 

research could explore methods to address this constraint and ensure more 

comprehensive coverage. Finally, we do not disclose the difference in citation 

patterns between main path members and disruptive papers in detail. Case study may 

bring more insight into how the two kinds of papers contribute the scientific progress 

in scientometrics. 
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