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Abstract 

Technological innovations are becoming increasingly competitive among nations, as countries strive 

to gain a technological advantage to safeguard their national interests. This competition leads to 

technology suppression, supply disruption, and export controls, which can undermine the integrity of 

supply chains. Technologies supply disrupted by export controls from collaborating countries are 

referred to as bottleneck technologies, posing significant threats to national security. These 

technologies shall be identified promptly to inform effective technology and diplomacy 

policymaking. Existing studies have focused on the quantity and quality gaps or topic strength gaps 

of technologies, emphasizing their technological attributes. However, political attributes, particularly 

those driven by political competition, have received insufficient attention. We argue that bottleneck 

technologies are not only technological products but also political products, shaped by both 

technological and political factors. This paper introduces the concept of 'technological political 
distance' to identify bottleneck technologies, characterized by a country's subjective motivation to 

create a 'control.' By analyzing citation networks and calculating indices like PageRank as “be able 

to control”, we identify highly cited patents in key technology areas as 'worthwhile to control' in terms 

of value. Empirical research in the field of integrated circuits shows that China faces high risks in 

foundational semiconductor technologies, circuit integration methods, material science, and 

manufacturing processes, while the risks in sensor, imaging, and signal transmission technologies are 

relatively low. 

Introduction 

Science and technology (S&T) innovation has become a critical arena of national 

competition, with countries vying for emerging and advanced technologies to secure 

global competitive advantage(Schmid et al., 2025). This intense rivalry not only 

heightens technological competition but also disrupts international technological 

collaboration, posing significant threats to national security(Luo, 2022; Sun, 2019; 

Vivoda, 2023). Consequently, it is crucial to identify potential bottleneck 
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technologies and assess the associated risks, so that policymakers can both leverage 

the dividends of global collaboration and safeguard S&T security. Drawing on 

historical instances of international technology competition—particularly the U.S.-

China rivalry, this paper argues that bottleneck technologies are not merely a 

technical concern but also a political one, exhibiting intertwined attributes of 

technology and politics. We extend the literature on technology identification and 

bottleneck technologies (Guoxiong et al., 2021; Haiqiu et al., 2023; Jin et al., 2020; 

Zhiwei et al., 2021) by conceptualizing bottleneck technologies as those 

characterized by (1) the willingness to impose technology controls, (2) the capacity 

to impose such controls, and (3) the strategic value that motivates these controls. To 

quantitatively evaluate these attributes, we incorporate a Political Distance (PD) 

index—calculated from large-scale United Nations (U.N.) voting data—to quantify 

geopolitical risks encountered by technologies and construct a citation network to 

represent the overall technology system. We then apply the PageRank algorithm to 

identify key technologies which play key roles in maintain the function and integrity 

of the technology system, whose removals may cause the system dismantling and 

technology dysfunction. Combining patent-based and topic-based analyses, we 

propose that those bottleneck technologies are controlled by competitors who both 

desire and are able to halt supply to China, and which China cannot rapidly reproduce. 

An empirical study on integrated circuits demonstrates that China is highly 

vulnerable in foundational areas such as semiconductor devices, circuit integration 

methods, material science, and manufacturing processes, yet faces relatively lower 

risks in sensor technology, imaging technology, signal transmission, and other 

applications. These findings are validated by expert assessments and the U.S. 

technology control list, highlighting the practical utility of this method. 

Methodology and Research Design 

This study introduces a novel metric, Technology Political Distance (TPD), to 

quantify the political risks associated with various technologies. The metric is 

derived from extensive voting data sourced from the United Nations. Additionally, 

this research incorporates PageRank-based algorithms to identify technologies that 

are central to the overall technological ecosystem. By combining these approaches, 

the study highlights key bottleneck technologies at both the patent and topic levels. 

The proposed research framework is visually represented in Figure 1. 
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Figure 1. Research framework. 

 

Quantifying the Political Attributes: Technology Political Distance 

This paper introduces the concept of political distance to analyse the potential effects 

of international collaboration across different countries. Drawing on the idea 

proposed by Bailey et al. (2016), political distance is characterized using 

discrepancies in countries' voting behaviors at the United Nations on various issues. 

These voting differences act as proxies for the political distance between nations. A 

larger voting disparity between two countries typically reflects divergent national 

interests, increasing the likelihood of rivalry. In contrast, a smaller voting difference 

indicates closer alignment in interests, suggesting a higher probability of these 

countries being allies or partners. To enhance the accuracy of the political distance 

measure, we employ the Item Response Theory (IRT) statistical model, which 

constructs annual scale data representing each country’s "ideal point"—a binary 

metric indicating the shifting similarity in political preferences between two 

countries. The IRT model, traditionally used to describe the relationship between a 

subject’s latent traits (such as abilities) and their responses to test items, is adapted 

here to estimate the ideal point, which reflects a country’s foreign policy orientation. 

This methodology provides a more nuanced and robust framework for measuring 

political distance in international relations. 

 
Pr(𝑌𝑖𝑡𝑣 = 𝐾) =  𝛷(𝑟𝑘𝑣 − 𝛽𝑣𝜃𝑖𝑡𝑣) −   𝛷(𝑟𝑘−1,𝑣 −  𝛽𝑣𝜃𝑖𝑡𝑣) (1) 
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In the above equation, the left-hand side represents the probability distribution of 

country i's choice of approval (k=1), abstention (k=2), and negation (k=3) in the v-

th vote, which can be obtained by observing the voting behavior. Where β represents 

the differentiation parameter of the item, r represents the difficulty parameter of the 

item, and θ represents the ideal point of the measured ability or trait, the posterior 

expectations of the parameters β, r, and θ can be estimated using Bayesian estimation 

with the help of MCMC (Markov Chain Monte Carlo) algorithm. 

Further, following Davis et al. (2019), the absolute difference between the ideal 

points of China and its partner countries is employed as a proxy for bilateral political 

distance. This metric specifically quantifies the degree of divergence between 

China's foreign policy orientation and that of its trading partners, thereby providing 

an indicator of the political relationship between the two nations. This approach 

offers a more precise measure compared to traditional indices such as the voting 

similarity index, the affinity index, and the "S" index. So, we employ the divergence 

of ideal point distance to quantify the political distance between countries. By 

following these steps, the political distance between China and other countries can 

be calculated. 

Since a single patent may belong to multiple patent families registered across 

different countries, it is essential to consider the patent family structure. We argue 

that expanding a patent family across multiple nations generates substantial 

technology spillover effects in the current market (Frakes & Wasserman, 2021; Lee, 

2021; Taichen et al., 2022). This expansion can accelerate technology transfer and 

foster local technological development (Xue, 2022), driving technological 

advancement and industry upgrading. Building on this, we hypothesize that when 

countries with significant political distance from China register patents either within 

China or in countries with close technological proximity to China, the resulting 

technology spillover can stimulate local technological growth and upgrading. This, 

in turn, reduces the likelihood of these technologies becoming bottlenecks for China. 

On the other hand, if countries with considerable political distance from China 

register patents in other nations that also maintain substantial political distance from 

China, these countries are more likely to form technological alliances and establish 

barriers, which could restrict China’s access to these technologies. Based on this 

framework, we define TPD as the average political distance between the countries 

where the patent family is registered and China, denoted as: 

 

𝑇𝑃𝐷𝑛 =
∑ 𝑃𝐷𝑖

𝑚
𝑖=1

𝑚
(2) 

 

Technology Control Capability 

Motivated by technology system theory as proposed by Arthur (2009), we 

conceptualize the entire technological landscape as a complex system. Building on 

prior studies that employ complex networks to model such systems (Han et al., 2021), 

we construct a citation network to capture the interconnections and structural 

composition of the technology ecosystem. In the context of technology competition, 

the control over certain key technologies has been observed to disrupt the proper 
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functioning of an entire technological field. To further explore this phenomenon, we 

introduce the concept of network dismantling, which involves the strategic removal 

of specific nodes (i.e., technologies) to fragment the citation network and induce 

dysfunction within the broader technology field (Fan et al., 2020). The identified 

nodes represent potentially risky technologies, whose removal could critically impair 

technological continuity and development. 

Building on this concept, we introduce a network-based algorithmic approach to 

identify critical technologies—those essential to maintaining the integrity of the 

technology system. Given that different algorithms assess node importance from 

varying perspectives, we integrate multiple algorithms to create a complementary 

framework for identifying key technologies more effectively. To achieve this, we 

employ degree centrality (DC), betweenness centrality (BC), and structural hole (SH) 

analysis (S. Burt, 1992), along with HITS and PageRank (PR) (Tongliang et al., 

2023). These measures collectively capture different dimensions of a technology's 

influence within the network: (1) Degree centrality (DC) identifies technologies with 

the highest number of direct connections. (2) Betweenness centrality (BC) detects 

technologies that serve as critical bridges between different subfields. (3) Structural 

hole (SH) highlights technologies that control access to otherwise disconnected 

technological domains(S.Burt, 1992). (4) HITS (Hyperlink-Induced Topic Search) 

distinguish between hub technologies (those that connect to many authoritative 

technologies) and authority technologies (those that are referenced by influential 

hubs). (5) PageRank (PR) assigns importance based on the recursive influence of a 

technology within the citation network (Tongliang et al., 2023). By leveraging this 

multi-perspective approach, we enhance the robustness of our analysis, ensuring a 

more comprehensive identification of crucial technologies within the system. 

To comprehensively assess the weight of each indicator, we employ the Criteria 

Importance Through Intercriteria Correlation (CRITIC) algorithm, a well-

established method for determining indicator importance (Danae et al., 1995). The 

CRITIC algorithm evaluates the significance of each indicator by analyzing both its 

comparative strength and its degree of conflict with other indicators. Through this 

approach, the weight of each indicator is systematically determined based on its 

intrinsic information content and its correlation with other indicators. The calculation 

of indicator weights follows the methodology outlined below: 

 

𝑊𝑗 = 𝛿𝑗 ∑(1 − 𝑅𝑘𝑗), 𝑗 ≠ 𝑘, 𝑗 = 1,2, … , 𝑛

𝑛

𝑗=1

(3) 

𝑊𝑗 denotes the weight for indicator j, and Rkj represents the correlation between the 

k-th indicator and the j-th indicator. 

Based on the weight and value of each indicator, the TC for each technology can be 

calculated by: 
𝑇𝐶𝑖 = 𝑊𝐷𝐶_𝑛𝑜𝑟𝑚 ∗ 𝐷𝐶_𝑛𝑜𝑟𝑚(𝑖) + 𝑊𝐵𝐶_𝑛𝑜𝑟𝑚 

∗ 𝐵𝐶_𝑛𝑜𝑟𝑚(𝑖) + 𝑊𝑆𝐻_𝑛𝑜𝑟𝑚  
∗ 𝑆𝐻_𝑛𝑜𝑟𝑚(𝑖) 

                                      +𝑊𝐻𝐼𝑇𝑆_𝑛𝑜𝑟𝑚 
∗ 𝐻𝐼𝑇𝑆_𝑛𝑜𝑟𝑚(𝑖) + 𝑊𝑃𝑅_𝑛𝑜𝑟𝑚 

∗ 𝑃𝑅_𝑛𝑜𝑟𝑚(𝑖)                         (4) 
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The 𝑇𝐶𝑖 denote the technology control capability of i th technology, and 𝑊𝐷𝐶_𝑛𝑜𝑟𝑚, 

𝑊𝐵𝐶_𝑛𝑜𝑟𝑚 
, 𝑊𝑆𝐻_𝑛𝑜𝑟𝑚 

, 𝑊𝐻𝐼𝑇𝑆_𝑛𝑜𝑟𝑚 
, 𝑊𝑃𝑅_𝑛𝑜𝑟𝑚 

 denote the weight of DC, BC, SH, 

HITS, PR respectively which have been normalized and the weight is calculated by 

CRITIC. 

 

Technologies classification based on dual perspective of politics and technology  

According to the dual properties of technologies in TC and PD perspectives, we 

categorize technologies into four types as Type A (high TC and high PD), indicating 

risky technologies due to those highly-impact technologies which are important to 

technology system are held by rival countries who have great PD with our country. 

Type B (high TC and low PD) is friendly sophisticated technologies held by our 

country and friendly countries. Type C and Type D are low-impact technologies, 

which exert limited impact on the technology system, so, whether those technologies 

held by our country, friendly countries or rivals will not significantly influence the 

normal operation of technology system, so, they are difficult to be the bottleneck 

technologies. 

Based on this classification (Figure 2), those technologies exist in Type A but do not 

appear in Type B are those sophisticated technologies held by rivals but not held by 

us and our friends, which can be taken as highly risky potential technologies, which 

is our general idea on bottleneck technologies identification. 

 
Figure 2. Four types of technologies classified by PD and TC. 

 

Potential bottleneck technologies identification 

Based on quantifying the PD and TC, we identify potential bottleneck technologies 

on patent and topic level respectively to complement the micro and macro 

information. In micro level, we propose the bottleneck index as K index which is 

defined as: 

 
𝐾𝑖 = 𝑇𝐶𝑖 ∗  𝑇𝑃𝐷𝑖  (5) 

 

K index describes whether those highly impact technologies are held by rival 

countries, to reflect the risk of be controlled in both technological and political 

perspective.  
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Furthermore, given that technology export control lists typically reference clusters 

of technologies rather than isolated patents, we conceptualize these clusters as 

“technology topics.” To extract these topics, we first obtain the abstract text from 

each patent and employ SciBERT which is proposed by Beltagy et al. (2019) to 

convert the text into semantic vectors, ensuring that words with similar meanings are 

positioned closely in the semantic space. Next, we apply the K-means clustering 

algorithm to group semantically similar words, thereby forming coherent technology 

topics. Finally, we compare the semantic similarity between topics in Type A and 

Type B—using a threshold of 0.8 to indicate identical topics. Technologies 

associated with topics that appear in Type A but not in Type B are classified as 

potential bottleneck technologies, whereas those found in Type B but absent from 

Type A are identified as strategic advantage technologies that could inform the 

implementation of technology sanctions. 

Empirical Study: Initial Results on Chinese Integrated Circuits Fields 

Data Source and Preprocessing 

Integrated circuits (IC) are at the heart of modern information technology and the 

electronics industry. As core technologies, they are pivotal for building national 

competitive advantages in the digital age and have become a central arena in the 

U.S.-China technology competition. Accurately identifying potential bottleneck 

technologies in the IC domain is therefore essential for maintaining national security. 

Furthermore, recent U.S. export controls on various IC technologies have intensified 

bottleneck effects. The methodology proposed in this study, which does not rely on 

pre-tested information and can be validated through an actual list of bottleneck 

technologies, offers timely insights into these challenges. For these reasons, the IC 

sector was selected for our empirical analysis. Patent data were retrieved from the 

Derwent Innovation Index (DII) database using the manual coding system developed 

by Derwent experts. We employed the retrieval formula “U13-*” on 30 November 

2023, which returned a total of 290,743 patents. Recognizing that bottleneck 

technologies are often characterized by high-value patents—as reflected in their 

citation counts—we filtered the dataset to retain only those patents with at least five 

citations, resulting in a subset of 83,211 patents. Finally, comprehensive data 

cleaning and preprocessing procedures were applied to ensure the dataset's readiness 

for further analysis. 

Political Distance Calculation 

According to the Equation 1, we utilize the IRT reaction function to calculate the 

ideal point for each country respectively, and calculate the absolute difference of 

ideal point between each country pairs. Notably, for organizations such as the 

European Patent Office (EP) and the World Intellectual Property Organization (WO), 

we calculate their TPD as the average PD between China and the participating 

countries within each organization. Further we extract the country (organization) of 

each patent holder and have 32 countries in total, and list those 5 countries with 

largest and closest political distance from China as shown in Table 1: 
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Table 1. The five countries with the largest and closest political distance from China. 

Country PD 

US 3.116 

IL 2.952 

GB 2.179 

CA 2.082 

FR 1.962 

BR  0.318 

MY 0.266 

SG 0.242 

ZA 0.203 

IN 0.161 

 

Technology Control Capability  

Based on the patent citation network, we apply the five network-based algorithms to 

calculate the PR index and other indicators for each patent, and apply the Equation 

3 for evaluating the weight for each indicator as shown in Table 4 and calculate the 

TC for each patent by Equation 4. We list the 5 patents which have the highest TC 

as shown in Table 3. 

𝑊𝑗 = 𝛿𝑗 ∑(1 − 𝑅𝑘𝑗), 𝑗 ≠ 𝑘, 𝑗 = 1,2, … , 𝑛

𝑛

𝑗=1

(5) 

 

Table 2.  Weight for each indicator calculated by CRITIC. 

 

 

 

 

 

 

 

Table 3. Patents with top 5 TC. 

 

 

 

 

 

 

 

Indicator Weight 

𝜔𝐷𝐶  0.0562 

𝜔𝐵𝐶  0.0371 

𝜔𝐻𝐼𝑇𝑆  0.0265 

𝜔𝑃𝑅  0.0258 

𝜔𝑆𝐻 0.0543 

PN TC 

US2006007612-A1 0.133 

WO9907000-A2 0.126 

EP1746645-A2 0.118 

US2007196982-A1 0.112 

EP738010-A2 0.105 

… … 



1331 

 

Potential Bottleneck Technologies Identification: patent and topic level 

According to the definition and method for quantifying the bottleneck technologies 

(Equation 5), we first calculate the K index for each patent and list those patents with 

top 5 K index as shown in Table 4. 

By reading the abstract of those five patents, we find that they are in the technology 

field of: (1) circuit design for protecting nonvolatile read-only memories; (2) 

programming methods for nonvolatile memory cells; (3) reverse read-programmed 

EEPROMs and ROMs; (4) process and structural optimization of nonvolatile 

memory arrays; (5) construction of imaging sensors. 

 
Table 4. Patents with top 5 K Index. 

 

 

 

 

 

 

 

 

 

To classify the technologies into four distinct categories, we use two threshold 

criteria: the median value of TPD and the 80th percentile of TC. These thresholds, 

indicated by the red dashed lines in Figure 3, divide the dataset into four quadrants, 

with each quadrant representing a unique category of technology. 

 

 
Figure 3. The distribution of four types of technologies. 

 

To evaluate the topic distribution within Quadrant A (Type A technologies) and 

Quadrant B (Type B technologies), we employ a two-step approach. First, we use 

the SciBERT-Kmeans method to extract technology topics. However, since the 

number of topics for each technology type must be determined manually, we then 

apply Latent Dirichlet Allocation (LDA) for topic modeling to determine the proper 

number of topics. For each technology type, we calculate the coherence score to 

assess model quality and select the number of topics that yields the highest coherence 

Rank PN K Index 

1 US2006007612-A1 0.133 

2 WO9907000-A2 0.126 

3 EP1746645-A2 0.118 

4 US2007196982-A1 0.112 

5 EP738010-A2 0.105 

… …  
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score. Based on this analysis, we define 14 topics for Type A technologies and 20 

topics for Type B technologies. The resulting topic distributions are presented in 

Figure 4. 

 

 
Figure 4. Topic distribution for Quadrant A(left) and Quadrant B(right). 

 

Furthermore, we employ the Term Frequency-Inverse Document Frequency (TF-

IDF) method to extract the top 30 keywords representing each topic, subsequently 

inviting domain experts to label each topic based on these keywords. Our analysis 

reveals that the topics in Quadrant A primarily pertain to semiconductor devices, 

circuit integration, logic devices, insulation technology, electrode engineering, 

imaging and sensing, logic circuits, electrode integration, oxidation technology, 

electrical signals, electrode dynamics, imaging integration, as well as insulation and 

electrode-related fields. This indicates that the technologies in Quadrant A 

predominantly focus on the manufacturing and design of semiconductor devices. 

Similarly, the topics in Quadrant B encompass areas such as imaging processors, 

insulated circuits, signal imaging, semiconductor devices, line transmission, storage 

arrays, selective thin films, photoelectric imaging, signal films, circuit components, 

voltage thin films, sensing imaging, insulated storage, imaging thin films, insulating 

films, sensing transistors, signal gates, semiconductor surface engineering, insulated 

circuits, and voltage equipment. 

To compare the topic similarity between topics in two category, we apply the cosine 

similarity calculation on topics’ semantic vector which can be found in Figure 5. 
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Figure 5. The topic similarity between Quadrant A(y axis, Type A) and Quadrant B(x 

axis, Type B). 

 

As illustrated in Figure 5, our analysis reveals that in our (our country and friendly 

country with small TPD) Topic 0, 1, 6, and 7 (Type B in Figure 5), rivals who have 

large TPD (Type A in Figure 5) have not made any significant deployments in these 

technological areas. This absence of rival engagement provides us with a strategic 

advantage, which can be used as diplomatic tools. These technologies primarily 

encompass advanced sensors, novel materials, and energy storage and conversion 

technologies, including microelectromechanical systems, optoelectronic sensors, 

photovoltaic conversion technologies, solar photovoltaic cells, 3D imaging, and 

nanomaterials, as determined through the distribution of topic keywords. 

Conversely, in the case of topics dominated by competitors—specifically Topics 6, 

7, and 9 (Topic A in Figure 5), our country and those friendly nations (Topic B in 

Figure 5) have few deployments on those topics. If competitors impose export 

restrictions on these technologies, we may face significant vulnerabilities, potentially 

leading to supply chain disruptions. These technologies can therefore be identified 

as high-risk bottleneck technologies with the potential to pose critical challenges to 

technological and economic security. By reading the keywords identified by TF-IDF 

algorithm in those topics, it can be found that potential bottleneck technologies are 

mainly distributed in: (1) basic electronic components, including the application of 

traditional materials such as silicon-based semiconductors and compound 

semiconductors, (2) Circuit manufacturing and design, encompassing ASIC 

design, chip manufacturing, and packaging technologies, (3) Signal processing and 

voltage control, including analog and digital signal processing technologies used in 

communications and data processing. 
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Validation 

To validate our findings, we first engaged domain experts in the integrated circuit 

(IC) industry who hold Ph.D. degrees in semiconductor-related fields and possess 

both academic and industrial experience. Their combined expertise enables them to 

make well-informed judgments on the technological landscape. The experts 

concurred with our conclusions that basic electronic components, circuit 

manufacturing and design, and signal processing and voltage control constitute 

China's current bottleneck technologies, primarily controlled by the United States 

and Japan. These constraints have significantly disrupted China’s ability to 

manufacture advanced chips. However, the experts also noted that due to the vast 

scope of the IC industry, it is challenging for any single expert to maintain a 

comprehensive and systematic understanding of the entire technological landscape. 

As a result, they recommended an additional validation step—comparing our 

findings with the export control policies of major countries. Following this 

recommendation, we referenced the U.S. Commercial Control List and its annotation 

system from the Export Control Database of the National Science Library of  Chinese 

Academy of Sciences (Fang et al., 2022). By analyzing controlled technologies in 

the integrated circuits sector, we identified the five most highly regulated 

technologies on the control list: (1) Semiconductor device testing, (2) Electronic 

testing, (3) Electronic sensors, (4) Communication testing equipment, (5) Wafer 

inspection-related technologies. All five of these technologies were successfully 

identified through our methodology. Notably, the electronic sensor technology listed 

in the control database includes the optoelectronic sensor technology identified in 

our study. Although subject to export controls, this technology remains an area where 

China currently holds a competitive advantage, making it less susceptible to 

becoming a critical bottleneck. In contrast, the other technologies on the control list 

represent key bottleneck areas that could significantly impact China’s technological 

and industrial security. These results further validate the scientific rigor and practical 

value of the methodology proposed in this study. 

Conclusion and Discussion 

In this paper, we propose a novel approach to quantifying the political attributes of 

technology within the context of global competition. By introducing the concept of 

political distance, we aim to identify potential bottleneck technologies that may pose 

risks to national security and highlight technological vulnerabilities. First, we define 

political distance by considering the countries of patent assignees and conceptualize 

the Technology Political Distance Indicator as a measure of a country’s preference 

for conducting technology exports. Second, we treat technology as a complex system 

represented by a citation-based network. Utilizing PageRank and other network-

related indicators, we identify critical nodes (patent sets) whose removal could 

fragment the network and disrupt technological systems, thereby assessing the 

impact of technology export controls. Third, leveraging both technology political 

distance and technology control, we categorize technologies into four distinct types 

and identify potential bottleneck technologies at both the patent and topic levels. 

Through an empirical study on integrated circuit technologies, our findings indicate 
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that China holds a leading advantage in cutting-edge applications such as advanced 

sensors, novel materials, and energy conversion technologies. However, 

foundational technologies—including basic electronic components, advanced 

semiconductor materials, and circuit manufacturing and design—are predominantly 

controlled by countries with which China has distant political relations. Notably, key 

areas such as logic circuits and electrode integration remain largely underdeveloped 

domestically. If access to these foundational technologies were restricted, it could 

severely disrupt China’s industrial and supply chains. As such, these fundamental 

technologies represent critical bottlenecks that China must address. Our results are 

validated through expert assessments and cross-referenced with the U.S. 

Commercial Control List, demonstrating the robustness and practical relevance of 

our proposed method. 

Meanwhile, we acknowledge the potential limitations of our research and propose 

future directions that warrant further investigation. While our study introduces a 

novel method for quantifying the political attributes of technologies, thereby 

enhancing the understanding of the nature and implications of bottleneck 

technologies, it is important to recognize that bottleneck technologies are inherently 

complex. Their formation is influenced by multiple interrelated factors, including the 

foundational scientific knowledge, the structure of the technology supply chain, and 

the positioning of a given technology within the global value chain. These factors 

interact in intricate ways and collectively shape the emergence of bottleneck 

technologies. Therefore, we suggest that future research on bottleneck technology 

theory should focus on developing a rigorous logical framework and modeling 

approaches to better explain the dynamic mechanisms underlying the formation of 

bottleneck technologies. From a practical perspective, researchers should also 

explore strategies for integrating multi-source data to construct a comprehensive and 

systematic depiction of the technological landscape, enabling more precise 

identification of critical bottleneck points. 
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