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Abstract 

Field normalization plays a crucial role in scientometrics to ensure fair comparisons across different 

disciplines. In this paper, we revisit the effectiveness of several widely used field normalization 

methods. Our findings indicate that source-side normalization (as employed in SNIP) does not fully 

eliminate citation bias across different fields and the imbalanced paper growth rates across fields are 

a key factor for this phenomenon. To address the issue of skewness, logarithmic transformation has 

been applied. Recently, a combination of logarithmic transformation and mean-based normalization, 

expressed as ln(c+1)/mu, has gained popularity. However, our analysis shows that this approach does 

not yield satisfactory results. Instead, we find that combining logarithmic transformation (ln(c+1)) 

with z-score normalization provides a better alternative. Furthermore, our study suggests that the best 

performance is achieved when combining both source-side and target-side field normalization 

methods. 

Introduction 

Citation and its derivative indicators are commonly used to reflect impact and are 

among the most important quantitative metrics in scientific evaluation (Garfield, 

2006). However, differences in citation potential among fields result in field biases 

in citation-based indicators (Leydesdorff & Bornmann, 2011). The development and 

improvement of metrics which support cross-field comparison become a crucial 

issue in scientometrics.  

Citation field normalization encompasses two important problems: how to treat the 

field difference and how to conduct the normalization. As for the first problem, there 

are two main streams of research aimed at addressing field bias: source-side 

normalization and target-side normalization.  

Theoretical basis of source-normalized methods is that the varying citation density 

across fields is due to differences in the length of references (Mingers & Yang, 2017; 

Zitt & Small, 2008). In 2008, Zitt and Small proposed to normalize the raw citation 

by considering the reference length of citing source（1/r） (Zitt & Small, 2008). 

Later the concept of active reference(1/a) is introduced in 2011 (Leydesdorff & 

Bornmann, 2011) and journal’s activity factor in 2012 (Waltman et al., 2013; 

Waltman & van Eck, 2013b), to account for the different accumulation rates of 

citations across different fields. The prerequisites for source-normalized methods to 

function fully are overly idealized and cannot be achieved in practice. Waltman 
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(Waltman & van Eck, 2013a) conducted a systematic large-scale empirical 

comparison among three source-normalized methods, but the evaluation framework 

he used does not support statistical tests. Meanwhile, how topic growth relates to 

citation counts and impacts citing-side normalization (Leydesdorff & Opthof, 2010; 

Waltman et al., 2013; Waltman & van Eck, 2013b) is not intuitive and still not well 

understood (Sjögårde & Didegah, 2022). This gap highlights the need for further 

research to explore how topic growth dynamics influence citation patterns and 

normalization practices. 

The primary idea behind target-normalized methods is to calculate a relative citation 

performance given a comparable set for each publication or journal, which is 

commonly based on a field classification system (Leydesdorff & Bornmann, 2011). 

Therefore, the first issue of this normalized approach lies in the selection of field 

classification system (Bornmann, 2020). Recent studies have shown that a paper-

level classification system performs better than journal-level classification system in 

reducing the citation bias (Ruiz-Castillo & Waltman, 2015; Shu et al., 2019; 

Strotmann & Zhao, 2010). 

Once the classification system is determined, the second issue is selecting the 

normalization approaches which typically receives relatively less attention but is 

crucial. Currently, mean-based normalization (c/mu) (Abramo et al., 2012a, 2012b; 

Radicchi et al., 2008) and z-score transformation (c-mu/std) are the widely used 

practices because they are intuitive and simple. Recently, the log transformation of 

citation is introduced to overcome the skewness of citation distribution (Brzezinski, 

2015; Eom & Fortunato, 2011; Lundberg, 2007; Shen et al., 2018; Stringer et al., 

2008). Furthermore, the normalization is applied to the transformed citation, 

especially the z-score normalization approach (Lundberg, 2007). A more detailed 

discussion of normalization approaches, including their applications and limitations, 

can be found in the review in 2016 (Waltman, 2016). Here leads to our second 

question, does this combination result better normalization performance (log-

transformation + Z-score), or which type combination performs better? 

In this paper, we want to answer the following questions:  

(1) Can the source-normalized methods entirely eliminate citation bias among 

fields? 

(2) For target-side normalization, among c/mu, c-mu/std, ln(c)/mu, ln(c)-mu/std, 

which approach has better performance? 

(3) Will the combination of source-side and target-side normalization achieve better 

performance? 

Data and Methods 

Publication data and citation data 

We collect articles and reviews indexed in the Web of Science (WoS) between 2020 

and 2021 and their citations received in 2022. To ensure consistency in the data 

coverage, we focus exclusively on articles and reviews indexed in the Science 

Citation Index Expanded (SCIE) and Social Sciences Citation Index (SSCI) 
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categories. Finally, the dataset for 2020 and 2021 comprises a total of 450,810 

papers, while the dataset for 2022 includes 2,221,501 papers. Additionally, the 

citation relationships in 2022 contain 118,294,005 citations, with 16,329,497 of these 

citations referencing core papers published in 2020 and 2021. 

Classification systems 

In this study, we leverage two distinct classification systems to categorize the 

collected publications, ensuring a more robust and unbiased approach to field 

normalization and evaluation. Specifically, we align the papers in our dataset with 

both the CWTS paper-level classification system, which provides hierarchical 

classification across three granularity levels—micro-level, meso-level, and macro-

level topics (Waltman & van Eck, 2012)—and the SciSciNet subfield classification 

system, which is derived from the MAG (Microsoft Academic Graph) dataset and 

consists of 292 specific subfields (Lin et al., 2023). This dual-classification strategy 

addresses the potential issue of bias that may arise when using a single classification 

system for both normalization and evaluation, thus avoiding the “athlete and referee” 

situation, where the same classification system influences both the standardization 

and assessment processes. 

Among the collected publications, 90.9% of publications can be matched to CWTS 

classification systems and 97.9% of publications can be matched to SciSciNet 

subfield classification system through DOI. For the unmatched papers, we generate 

embeddings based on title and abstract using SPECTER (Cohan et al., 2020) and 

apply the k-nearest neighbor algorithm(KNN) to find the most related classifications.  

Citation Indicators 

Building on the normalization approaches discussed earlier, the next step is to define 

the key bibliometric metrics that will be used in our analysis. These indicators are 

essential for evaluating the impact and performance of scientific publications, with 

citations being the most fundamental and widely-used measures. 

In this section, we categorize the normalization methods into three distinct types: 

source-side metrics, target-side metrics, and dual-side metrics. Each category offers 

different approaches to adjust for field-specific biases. 

Unnormalized metric 

Citation count, c. The citation count refers to the citations received by paper i in a 

given year. 

Source-side normalized metrics 

① First source normalized citation count, 
(1)sc . The (1)

isc  value of paper i is 

calculated as: 

(1)

1

1
( )

ic

i

i i

sc
r=

=
, 
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where ir  is the length of reference list in the paper from thi  citation. 
(1)sc  

would suppress citation bias among fields from source theoretically (Waltman 

et al., 2013).  

② Second source normalized citation count, 
(2)sc . The value 

(2)

isc  of paper i is 

calculated as: 

(2)

1

1
( )

ic

i

i i

sc
a=

=
, 

where 𝑎𝑖  is the number of active references in the paper from which 𝑖𝑡ℎ 

citation generates. Active reference is defined as papers in Web of Science, 

falling into the time window of analysis year (Waltman & van Eck, 2013b; Zitt 

& Small, 2008). For example, the active reference length for the 2-year time 

window of publications in 2022 refers to the number of references publishing 

between 2020 and 2021.  

③ Third source normalized citation count, 
(3)sc . The (3)

isc  value of paper i is 

calculated as: 

(3)

1

1
( )

×p

ic

i

i i i

sc
a=

= , 

where the definition of ia  is the same as 
(2)sc  and ip  is the proportion of 

publications which contains at least one active reference among all publications 

in journal of thi  citing publication (Waltman et al., 2013).  

For the above four metrics, we also calculate their logarithmic form: ln( 1)ic + , 

(1)ln( 1)isc + , (2)ln( 1)isc +  and (3)ln( 1)isc + , and respectively defined them as lnc , 

(1)lnsc , (2)lnsc  and (3)lnsc . 

Target-side normalized metrics 

For target-side normalized metrics, we consider two normalize approaches: relative 

ratio and z-score. 

① Relative ratio, 
fratio , we define it as  

f i
i f

m
ratio


=

, 

where im  refers to metric value of paper i and 
f is average metric value of 

papers which belongs to the same field with paper i. 

② z-score, 
fz .We define it as  
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f
f i

i f

m
z





−
=

, 

where 
f

i is average metric value of papers which belongs to the same field 

with paper i and 
f  is the standard deviation of metric value in field f. 

Dual-side normalized metrics 

By combining source-side and target-side normalization approaches, we have the 

dual-side normalized metrics as shown in Table 1. 

Table 1 shows the total indicators we investigated in this work. We combine Citation 

count, c and three source-side metrics with two different normalized approaches, 

resulting in 24 metrics (Table 1). The structure of Table 1 can represent the categories 

to which the normalization methods used for each metric belongs (non-normalized, 

source-normalized, target-normalized or both). 

 

Table 1. The combination of citation-based metrics and normalized approaches. 

- 

None Source side normalization 

Original Log Original Log 

None - c  
ln

c  
(1)

sc  
( 2 )

sc  
( 3 )

sc  
(1) ln

sc  
( 2 ) ln

sc  
(3) lnsc

 

Target side 

Normalization 

Ratio ( )R c  
ln( )R c  

(1)( )R sc  
(2)( )R sc  

(3)( )R sc  
(1)ln( )R sc  

(2)ln( )R sc  
(3)ln( )R sc  

Z-score ( )Z c  
ln( )Z c  

(1)( )Z sc  
(2)( )Z sc  

ln( )Z c  
(1)ln( )Z sc  

(2)ln( )Z sc  
(3)ln( )Z sc  

 

Evaluation Methodology 

Evaluating bias among fields 

We use two methods to assess whether the metrics correct bias among fields. The 

first qualitative method is based on a simple intuition: mean of the metric values in 

every meso-topic with field normalization effect should not have an obvious positive 

correlation with citation count that have not been normalized. So we will conduct 

scatter plots for each metric using field normalization methods against citation count 

to observe the relationship between them.  

The second quantitative method is grounded in the following assumption: if the 

rankings derived from a given metric are not biased across scientific fields, then the 

proportion of publications from each field within the top z% of ranked publications 

should match the proportion of that field in the entire dataset (Dunaiski et al., 2019; 

Vaccario et al., 2017). In other words, publications from each field should be evenly 

distributed across every ranking interval. To quantitatively assess this deviation, we 

adopt the evaluation standard d  proposed by Vaccario (Vaccario et al., 2017). 

Specifically, we compute the distributional inequality between the observed field 
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representation in the top z% and the expected distribution under field-neutral 

conditions. The greater this discrepancy, the poorer the effect of field normalization.  

For a given metric 𝑚, the expected number of papers from subfield 𝑖 in the top 

𝑧%  under perfect field normalization is 𝜇𝑖
(𝑚)

=  (𝑧/100) ∙ 𝐾𝑖 , where 𝐾𝑖  is the 

total paper numbers in subfield 𝑖. The observed count 𝑘𝑖
(𝑚)

 represents the actual 

representation of subfield 𝑖 in the top 𝑧%. Then we can quantify the overall field 

bias using the Mahalanobis distance ( d ): 

𝑑𝑀
(𝑚)

= ∑
(𝑘𝑖

(𝑚)
−𝜇𝑖

(𝑚)
)2

𝜎𝑖
2

𝐹
𝑖=1 ∙ (1 −

𝐾𝑖

𝑁
), 

where 𝜎𝑖
2  =  𝛾 ∙ 𝐾𝑖 ∙ (𝑁 − 𝐾𝑖) is the expected variance and 𝑁 is the total papers 

in the dataset. The finite-population correction factor  𝛾 =
𝑛∙(𝑁−𝑛)

𝑁2∙(𝑁−1)
 accounts for the 

reduced variance in sampling without replacement, ensuring cross-sample 

comparability of bias measurements. The term (1 −
𝐾𝑖

𝑁
)  dampens the 

disproportionate influence of dominant subfields on the aggregate bias metric, 

preventing overestimation from majority fields. 

The 95% confidence interval for the simulated unbiased selection process using all 

publications represents the minimum standard to accomplish the task of field 

normalization, and d  based on citation count represents a benchmark with no 

effect at all. It is worth noting that we utilized the micro-level topics from CWTS to 

standardize various metrics on the target side, while meso-level topics was employed 

to compute d to evaluate the effectiveness of the standardization. Additionally, we 

also used the subfield classification system from SciSciNet to recalculate d  as a 

robustness check. 

Benchmark of quantitative evaluation 

We analyse the distribution of d  using subfield classification of SciSciNet 

through a simulated unbiased selection process as a statistical null model. 

Specifically, we extract 10% of the total publications to calculate dΜ . Figure 1 

illustrates the distribution of d  with 500,000 simulations, with the upper bound 

of the 95% confidence interval estimated to be approximately 329.83. All rankings 

generated by the metrics described above will compute d  and compare it with the 

value of 329.83. 
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Figure 1. the distribution of  d . 

 

Results 

RQ1: Can the source-normalized methods entirely eliminate citation bias among 

fields? 

To address the question of which one of source-normalized methods can better 

correct the citation bias among fields, we construct scatter plots of several original 

metrics ( (1)sc , (2)sc and (3)sc ) against citation count c , without applying any 

normalized methods (Figure 2(a) – (c)). Among these, (1)sc  with the smallest slope 

shows the best performance, but the differences in performance among the three 

source-normalized methods are not significant. 

To better account for the influence of outliers and reflect the overall relationship 

between indicators, we rank the papers based on the values of the indicators and 

calculate the correlation among the rankings (Figure 2(d) – (f)). In ranking 

correlations, (3)sc  exhibits the most effective correction for field bias. However, all 

three source-normalized methods ( (1)sc ,  (2)sc  and  (3)sc ) still show a strong 

positive correlation with citation count ( c ), suggesting that none of the three source-

normalized indicators fully eliminate the field biases. Overall, (3)sc  demonstrates 

the best performance in addressing citation bias among three source-normalized 

methods. 
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Figure 2. Correlation between citation count and source-normalized metrics. 

 

We further validate the conclusion through a quantitative evaluation method based 

on 𝑑𝛭. The smaller the 𝑑𝛭, the better the normalization effect of metric among 

fields. As shown in Figure 3, (3)sc  achieves the smallest d  value across all 

percentiles, followed by (2)sc , and then  (1)sc . All three methods perform better 

than the benchmark c , demonstrating a certain degree of effectiveness of the 

source-normalized methods in reducing field bias. 

 

 
Figure 3. Field bias of source-normalized metrics. 

 

We further investigate why source-side normalization methods fail to fully eliminate 

field bias in the normalization process. According to Waltman’s 2013 paper on SNIP 
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(Waltman et al., 2013), there are three key assumptions for ensuring the effectiveness 

of source-side normalization:  

(1) the same number of papers are published annually within each field, i.e., 

𝑀2020
𝑓

=  𝑀2021
𝑓

=  𝑀2022
𝑓

;  

(2) there is no citation overlap between journals from different fields;  

(3) each journal has at least one paper with an active reference.  

If these three assumptions hold, the mean value (𝜇) of  (3)sc  for each field can be 

calculated as shown in the following formula (for details, see paper (Waltman et al., 

2013)): 

𝜇 =
2(𝑀2020+ 𝑀2021)

𝑀2022
= 1. 

The first two assumptions are difficult to achieve in practice and may help explain 

why these metrics fail to perform as expected. To further explore this issue, we test 

the validity of the first two assumptions. 

The core of assumption 1 is that 𝑀2022 =  
1

2
(𝑀2020 +  𝑀2020), implying that the 

number of papers published in a given field in 2022 should be equal to half of the 

total number of papers published in 2020 and 2021. However, in reality, the number 

of papers published in each field fluctuates every year, with varying degrees of 

change across different fields. This variation results in a mean value for (3)sc , that 

deviates from 1. To quantify this variation, we define the growth rate of a field as 
(𝑀2020+ 𝑀2021)

𝑀2022
. A higher growth rate corresponds to a larger μ value for that field. 

Assumption 2 posits that there is no citation overlap between journals from different 

fields. The core of source-normalized methods is the adjustment of citation counts 

by dividing them by the citation density of the corresponding field. If a paper is cited 

by journals from other fields, the citation density is either overestimated or 

underestimated, leading to normalization failure. To test this assumption, we define 

the citation density of a field. 

The citation density of a field f, denoted as 𝐷𝑓 , is defined as the total number of 

active references generated by all papers within the field. For a given paper 𝑖, its 

actual citation density 𝐴𝐷𝑖  is calculated as the weighted average of the citation 

densities of the fields that cite it: 

𝐴𝐷𝑖  =  ∑ 𝑤𝑖,𝑘  ∙ 𝐷𝑘𝑘 ∈ 𝐶𝑖𝑡𝑖𝑛𝑔𝐹𝑖𝑒𝑙𝑑𝑠𝑖
, 

where 𝑤𝑖,𝑘  is the proportion of citations received by paper 𝑖 from field 𝑘 and 𝐷𝑘 is 

the citation density of field 𝑘. The expected citation density of paper 𝑖 is the citation 

density of its own field 𝑓, denoted as 𝐷𝑓. Based on these, the density ratio for paper 

𝑖 is defined as: 

𝐷𝑅𝑖  =  
𝐴𝐷𝑖

𝐷𝑓
, 

this ratio greater than 1 indicates that the citation density of paper 𝑖 is overestimated, 

potentially underestimating the paper's true impact. Conversely, a ratio less than 1 

suggests that the citation density is underestimated, potentially overestimating the 

paper's impact. 
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Figure 4(a) shows the mean value of (3)sc  for each meso-field in the CWTS 

classification against the growth rate. The colour of each data point represents the 

citation density ratio. We observe a clear positive correlation between the growth 

rate and the mean (3)sc , and we find that when the citation density ratio is higher, 

the mean (3)sc  tends to be smaller. Figure 4(b) demonstrates a positive correlation 

between the mean value of (3)sc  and the growth rate, while showing a negative 

correlation with the citation density ratio. Further residual analysis reveals that the 

growth rate explains 63.7% of the variance in the mean value of (3)sc , suggesting 

that it is a primary factor contributing to the failure of field normalization. 

 

 
Figure 4. Factors affecting the effectiveness of source-side normalization. (a) 

Correlation between growth rate and average c for CWTS meso fields. (b) Strength 

of Correlation between Growth Rate/Density Ratio and Average 
(3)sc  by CWTS 

meso fields. 

 

RQ2: Among c/mu, c-mu/std, ln(c)/mu, ln(c)-mu/std, which approach has better 

performance? 

To explore this question, we calculate the original form c , ratio-normalized original 

form ( )R c , z-score-normalized original form ( )Z c , ratio-normalized logarithmic 

form ln( )R c , and z-score-normalized logarithmic form ln( )Z c . According to the 

recommendation of previous research, we conduct the field normalization at the 

micro-level. Meanwhile, we evaluate the normalization performance at both CWTS 

meso-level and SciSciNet subfields. As shown in Fig.5, the results suggest that, 

under both evaluation schemes, no single method consistently outperforms others 

across all scenarios. However, overall, retaining the original citation counts and 

applying ratio normalization ( ( )R c ) or using the logarithmic form combined with z-

score normalization ( ln( )Z c ) tend to yield relatively better outcomes. 
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Figure 5. Field bias of different normalization approaches. 

 

Strictly proving the effectiveness of these normalization metrics is challenging, but 

we can provide an intuitive explanation. Citation distributions are often 

approximated as log-normal distributions(Stringer et al., 2008). Under the 

logarithmic transformation, there is a natural connection between log(c) - μ and 

log(c/μ), leading to similar performance for ( )R c and 
ln( )Z c . Additionally, since 

the variance across distributions is also considered for 
ln( )Z c , the normalization 

performance is further improved. However, for log(c), which is already 

approximately normally distributed, using log(c)/μ, while aligning the means across 

different fields, tends to amplify the variance in fields with smaller means. This 

amplification gives these fields an advantage in top rankings and decreases the 

normalization performance. 

 

RQ3: Will the combination of source-side and target-side normalization achieve 

better performance? 

To address the question of whether combining source-side and target-side 

normalization can yield better performance than using source-side normalization 

alone, we leveraged the conclusions from RQ1 and RQ2. RQ1 demonstrated that 
(3)sc  is the most effective source-normalized metric, while RQ2 showed that 

applying ratio normalization to the original citation counts or using log-transformed 

z-score normalization generally yields better results. Building on these findings, we 

combined with the ratio normalization and log-transformed z-score methods to create 

two new indicators: 
(3)( )R sc  (ratio-normalized) and 

(3)ln( )Z sc  (log-transformed 

z-score-normalized). These newly constructed indicators were then compared 

against existing indicators, including c , ( )R c , and 
ln( )Z c , to evaluate their 

relative effectiveness in normalizing citation data and reflecting a paper’s impact 

within its field. 

As illustrated in Figure 6(a), evaluation using the meso-level topics from CWTS 

indicates that combining source-side normalization with target-side normalization 

methods yields better results than using target-side normalization alone, with the Z-

score method demonstrating superior performance for the field normalization task. 

Figure 6(b) presents the combination of source-normalized and target-normalized 
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methods (
(3)( )R sc  and 

(3)ln( )Z sc ), demonstrating significantly better performance 

compared to other single-method approaches when subfields from SciSciNet was 

used as evaluation classification system. Among these, the combination of z-score 

normalization with the logarithmic form of 
(3)sc , represented as 

(3)ln( )Z sc , always 

emerges as the most effective. 

These findings underscore the advantages of integrating source-side and target-side 

normalization methods. By leveraging their complementary strengths, the combined 

metrics provide a more effective and robust solution for addressing field-specific 

biases. 

 

 
Figure 6. Field normalization performance for combing source and target-side 

approaches. 

 

Conclusion 

In this paper, we evaluated various source-normalized methods and found that while 

they achieve some success in reducing bias across fields, they are all unable to fully 

eliminate it. Our analysis, including residual analysis, indicates that imbalanced 

paper growth rates across fields are a key factor contributing to the limitations of 

these methods, which not only addresses the puzzle of why these methods are unable 

to fully eliminate field bias (Sjögårde & Didegah, 2022) but also opens avenues for 

future research to develop more refined normalization approaches that can better 

account for such dynamic factors. 

We also found that using ratio normalization on original citation counts and log-

transformation followed by z-score normalization both yields relatively strong 

results. However, directly applying ratio normalization after log-transformation is 

not a theoretically sound method. As a result, some studies that rely on this method 

should critically re-evaluate their findings. 

Furthermore, by combining source-normalized and target-normalized methods, we 

found that the indicators constructed with ratio normalization (
(3)( )R sc ) and log-
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transformed z-score normalization ( (3)ln( )Z sc ) demonstrated relatively better 

performance compared to single-method approaches. However, these combinations 

still do not fully eliminate field differences within the 95% confidence interval. This 

suggests that while these combinations show promise, further refinement is needed 

to reduce biases more effectively. 

These findings offer insights for the practical application of field normalization. 

Developing more robust normalization evaluation frameworks and exploring more 

effective ways to combine source-side and target-side normalization methods, along 

with their mathematical justification, will be crucial for enhancing the comparability 

across disciplines and improving citation metrics evaluation. 
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