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Abstract 

Building on the framework of facilitymetrics and the features of big science facilities, this study 

provides a more micro method to identify the scientific mobility procedure, named scientific travels 

hereafter, and associated with scientific performance at the author level and paper level. We classify 

external users of big science facilities into two types (travelers and locals) by measuring the number 

of facilities the focal scientist’s used, measured by co-authored publications, during a specific period 

(one year, previously, and career level), visualize their gap in scientific performance, which is 

measured by a five-year disruption index and novelty score, and validate the impact relationships by 
causal inference respectively in paper-level and author-level. Results show that locals might produce 

more disruptive knowledge while travelers perform better in novel knowledge production. Paper-level 

and author-level regressions validate the results that the participation of travelers in teams leads to 

better novelty but lower disruption, and the performance gaps between travelers and locals surely 

exist. However, from a long-term perspective, the disruptive ability could increase significantly as a 

traveler is fully localized and gradually surpasses his or her peers’ ability. The novelty ability of 

travelers might decrease slowly but insignificantly since they are always ahead of locals and their 

peers. This study contributes to understanding the performance evaluation and science policy in big 

science facilities, which enriches the research in scientific mobility, and the results could be a 

reference for those short periods of scientific activity related to mobility without visible information 

to map and quantify. 

Introduction 

Scientific mobility is highly motivated by the development of transportation and the 

trends of globalization (Lin, Frey, & Wu, 2023), especially since the 21st century. 

Scientists, with their knowledge, can travel around the globe easily, communicate 

with distant peers, collaborate for new progress, and chase career success (Wang, 

Hooi, Li, & Chou, 2019). High mobility has already transformed the paradigms of 

knowledge production by several approaches, for instance, local knowledge could 

flow to a wider academia easily, and knowledge from different regions could be 

highly connected for global scientific progress (Franzoni, Scellato, & Stephan, 2012; 

Söderström, 2023a). As for a scientist, he or she could serve as a carrier of regional 

knowledge outflows to global academia. Similarly, scientists could be trained in 

multi-regions and eventually bring his or her diverse knowledge to in-flow regions 

(Thelwall & Maflahi, 2022). 
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In the science of science, the performance of scientific mobility receives great 

attention, and many studies are demonstrating the benefits of scientific mobility 

(Aykac, 2021; De Filippo, Casado, & Gómez, 2009). Even though temporary 

performance loss at individual and collective levels (so-called brain drain) is reported 

(Abramo, D'Angelo, & Di Costa, 2022; Verginer & Riccaboni, 2021) and types of 

inequality exist concurrently (Deville et al., 2014; Gu, Pan, Zhang, & Chen, 2024; 

Momeni, Karimi, Mayr, Peters, & Dietze, 2022), scientific mobility is still 

considered an effective way to improve individual performance in impact and 

productivity and is beneficial to returnees’ regions for a long-term perspective 

(Holding, Acciai, Schneider, & Nielsen, 2024; Liu & Hu, 2022).  

Thus, we suppose that the identifications of scientific mobility are not able to keep 

up with the increasingly evaluating demands in short-term scientific travels for 

communication and collaboration. Concurrently, most identifications based on the 

changing information in individuals’ affiliations and the related data are always 

extracted from their published records, scholar identity, and self-disclosing 

Curriculum vitae (CV). Such methods are still at a coarse-grained level since they 

might neglect several short-term scientific movements, which might also influence 

individual performance. We collected a unique dataset from the publications of 

global big science facilities, which could be used to fill this knowledge gap. 

Big science is considered one of the basic features of modern science, and big science 

facilities are research infrastructures for modern science. National or supranational 

bodies began the investments during World War II and are expecting these big 

machines to assist cutting-edge knowledge discoveries with advanced analytical 

technologies, especially in science-related disciplines (Hallonsten, 2014). Nowadays, 

big science facilities are operated as user-oriented experimental platforms, which 

requires users, considered as external scientists, from global academia to submit their 

research proposals and conduct their experiments on-site if users’ proposals are 

permitted successfully (Heinze & Hallonsten, 2017; Silva, Schulz, & Noyons, 2019; 

Söderström, 2023b).  

The utilization model of big science facilities provides us with a novel perspective 

to identify scientific mobility in a more micro way, and we suppose that “scientific 

travel” is a more suitable concept (Söderström, 2023a). Therefore, we demonstrate 

that those co-authored external scientists of the facility could be defined as scientific 

travelers if they are recorded in more than one facility during a specific period, and 

they are considered as scientific locals if they are only recorded in one facility. After 

the classification, we could compare the performance gaps between two types of 

external users at the author level and paper level by measuring the disruptive and 

novel abilities. 

This study contributes to current knowledge in several ways. Firstly, we proposed a 

more micro way to identify scientific mobility and named such level movements as 

scientific travelers, enriching the current research on the relationships between 

scientific performance and scientific mobility from a novel and unique perspective 

based on the research context in big science facilities. Secondly, we contribute to 

expanding the framework of facilitymetrics by providing significant evidence related 

to the performance gaps between different types of users (diverse or concentrated) 
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to facilitate the practices of brain gain and science policy in the era of big science. 

Thirdly, the results from the micro perspective could be extrapolated to those short-

term scientific activities full of knowledge communication and peer collaborations 

but concurrently hard to be identify in the level of scientific big data, for instance, 

attending international conferences, the plans of visiting scholars, and other on-site 

collaborations with cross-regional co-authors. 

We review the extant literature related to big science facilities and scientific mobility, 

introduce our methods of data collection, indicator construction, and quantitative 

predisposition, display our main results and supporting results, and discuss the 

potential implications of our results to science policy in the following sections. 

Literatures Review 

Big Science Facilities and Facilitymetrics 

Big science is a concept that has already existed for at least several decades since 

World War II, which gave birth to a group of research infrastructures with advanced 

experimental technologies and unique scientific circumstances for cutting-edge 

knowledge discoveries in science disciplines (Hallonsten, 2016; Heinze & 

Hallonsten, 2017). Such research infrastructures, named big science facilities, are 

commonly invested by national or supranational bodies since the processes of 

construction and maintenance require too much vast investment, huge network 

resources, and collective efforts to be afforded by one or several universities and 

institutions (D'Ippolito & Rüling, 2019). Therefore, the nature of big science 

facilities contain the concept of shared and are ready to open for scientific progress 

(Hallonsten & Christensson, 2017; Lauto & Valentin, 2013), known as user-oriented, 

and should be responsible to their taxpayers since they are public investment goods. 

Under such context, one cutting-edge discipline, so-called facilitymetrics, arose and 

has already developed for a decade to apply, revise, and update quantitative methods 

from scientometrics to evaluate the scientific performance of big science facilities. 

Facilitymetrics is first proposed by Hallonsten (2013) with suitable indicators 

(Hallonsten, 2014), for instance, Facility Immediate Index and Facility Impact 

Factors (Heidler & Hallonsten, 2015), applied to evaluate these machines’ 

performance based on the scientific publications supported by them. 

The development of facilitymetrics originated from the special features of big 

science facilities, leading to the evaluations of scientific performance should 

consider those hidden factors. For instance, the extreme number gap between 

investments and productivity might lead to absurd evaluative results (Lauto & 

Valentin, 2013). Moreover, in the context of big science facilities, knowledge 

production is highly depended on collaborations and the collaboration between 

communities should be highlighted since there are two unique communities of 

scientists related to big science facilities, named external scientists (users) and 

internal scientists (staff), respectively. With respect to previous studies in theories 

and the user orientation in practices, such a collaboration paradigm might damage 

the research chances of internal scientists and emphasize their functions of 

supporting and serving, which placed them in an underrepresented condition 
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(D'Ippolito & Rüling, 2019; Silva et al., 2019; Söderström, 2023b). However, in our 

previous work, results demonstrated that the paper-level performance would be 

significantly improved if external users collaborate with those internal scientists, 

ensuring the indispensable effects of internal scientists. From the theories of team 

science (Katz & Martin, 1997; van Knippenberg & Schippers, 2007), we supposed 

that it might be the heterogeneous knowledge, for instance, technology manipulation 

or data interpretation, that internal scientists possess that makes collaborative users 

conduct their experiments easier, more effective, and more standardized (Xu et al., 

2024; Yang, Tian, Woodruff, Jones, & Uzzi, 2022). Eventually, succeed in scientific 

performance. 

The utilization of most big science facilities is on-site (Söderström, 2023a), but these 

facilities are still suffering from the shortages of beamtime and research resources 

since the booming demands from global users and the annual experimental volumes 

in one facility are limited by natural reasons (D'Ippolito & Rüling, 2019). Therefore, 

potential users are required to submit research proposals to compete and await to be 

permitted by facilities (Hallonsten & Christensson, 2017). Those successful users 

need a short period to visit the facility and finish their research on-site during the 

limited beamtime. Such a mechanism enables us to identify whether the focal author 

traveled or not during a specific period. 

After all, big science facilities are considered experimental platforms for scientific 

research, especially important for those disciplines that highly depend on advanced 

analytical technologies such as X-rays, Particle accelerators, Free-electron lasers, 

and Neutrino detectors. Therefore, there are different types of big science facilities, 

and Synchrotron Radiation Lightsource (SLS) is one of the most attractive facility 

types in the framework of facilitymetrics. It is reported that about 50 SLSs are 

operating, and some of them are still under construction around the world 

concurrently (Conroy, 2024; Wild, 2021), and most of them have already produced 

considerable scientific knowledge with several Nobel prizes related to (Hand, 2010; 

Heinze & Hallonsten, 2017; Jiménez, 2010). Therefore, we mainly focus on the 

performance of SLSs in this study and confine our focal scientists to the community 

of external scientists for high accuracy to define travelers and locals with respect to 

the unique features abovementioned in the context of a big science facility. 

Scientific Mobility and Individuals’ Performance 

One of the features of modern science that benefited from the development of 

transportation is that scientific individuals could move around the globe more easily 

than before to communicate and collaborate with their peers (Franzoni et al., 2012; 

Lin et al., 2023; Söderström, 2023a; Van Noorden, 2012). Many studies have 

provided evidence to demonstrate the impacts of scientific mobility, and such 

influences could be divided into two aspects approximately. One focuses on 

evaluating the socio-economic impacts and the future of in-flow and out-flow 

regions (Verginer & Riccaboni, 2021) and the other attempts to discover the 

variation of individuals’ scientific performance (De Filippo et al., 2009). 

In the science of science, scientific mobility is tightly associated with the evaluations 

of scientific performance (De Filippo et al., 2009). Moving to another place might 
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bring several risks and challenges (Deville et al., 2014), leading to a temporary 

productivity loss (Abramo et al., 2022), disconnecting with previous colleagues in 

the former affiliations gradually (Wang et al., 2019), and eventually damaging 

individuals’ performance. However, from a further perspective, specifically at the 

career level, the main viewpoint of scientific mobility demonstrates that mobility 

offers more improvements in performance for individuals as returns (Holding et al., 

2024; Tartari, Di Lorenzo, & Campbell, 2020). It is reported that individuals’ social 

networks are supposed to be expanded since new connections will be set up as 

scientists move to another scientific affiliation while the previous connections will 

not disappear suddenly (Jiang, Pan, Wang, & Ma, 2024; Liu & Hu, 2022; Wang et 

al., 2019). Moreover, several studies have demonstrated scientific mobility could 

eventually improve individuals’ performance in productivity and impact by 

comparing those moving scientists with their peers without moving experiences 

(Chen, Wu, Li, & Sun, 2023; Momeni et al., 2022; Uhlbach, Tartari, & Kongsted, 

2022). The chances of collaboration, the probability of producing high-quality 

articles, and the internationalized impact are also discovered to be improved due to 

scientific mobility (Aykac, 2021; Gu et al., 2024). 

Previous research highlighted the importance of scientific mobility. However, we 

supposed that the methods of mobility identification and performance evaluation are 

still at a coarse-grained level. As to mobility identifications, most studies depended 

on the changes in affiliated relationships to justify whether a focal scientist moved 

or not, and the information on affiliations is commonly extracted from published 

records (Aykac, 2021; Deville et al., 2014; Holding et al., 2024; Jiang et al., 2024; 

Liu & Hu, 2022; Momeni et al., 2022). Several studies also collected the mobility 

information by analyzing the author-level identifications, for instance, ORCID, 

Scopus ID, and Web of Science ID, or picking up affiliations information from 

individuals’ curriculum vitae (CV) (Abramo et al., 2022; De Filippo et al., 2009; 

Tartari et al., 2020; Wang et al., 2019). Such methods might lack of strengths in 

interpreting how those short-term scientific activities, without changing affiliation 

information, could influence the scientists’ performance in return. However, the 

gradually connective scientific communities and increasingly facilitating scholarly 

communications require demonstrations on whether short-term scientific activities, 

such as scientific visits, attending conferences, moving around for face-to-face 

collaboration, and conducting scientific experiments in another lab or facility 

abovementioned, will benefit or hurt scientists’ performance. It is also a question 

attracting great attention from academia, policymakers, and the public. 

Additionally, as to author-level performance evaluations, several studies took the 

mean value or positive probability of paper-level performance as a representation (Li, 

Tessone, & Zeng, 2024; Zeng, Fan, Di, Wang, & Havlin, 2022). However, we 

suppose that in the context of widespread collaborations, paper-level performance 

might need to be credited to co-authors respectively by measuring their contributions 

(Thelwall & Maflahi, 2022). Therefore, we introduced a cost-benefit perspective in 

this study and considered that all scientists’ efforts during a specific period should 

be limited, dispersing to his or her scientific publications unevenly (Jones, 2021; 

Leyan Wu, Yi, Bu, Lu, & Huang, 2024). Therefore, the benefits of one scientist 
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attained from each publication depend on the costs he or she has invested (Zhang et 

al., 2024), and the volume of investment is measured by author sequence and based 

on the methods of proportional count (VanHooydonk, 1997). 

Summary 

Those short-term scientific activities without varying affiliations are named by us as 

Scientific Travels. They are increasingly common, but academia still knows little 

about scientific travels’ impact on individuals’ performance since, at the level of 

scientific big data, it is challenging to define and identify these activities with credit 

accuracy. However, the features of big science facility utilizations provide a valuable 

perspective and make such micro-identification possible. Based on the publications 

supported by worldwide big science facilities, the SLSs, it is easy to identify external 

scientists’ global scientific activities and their flows during a specific period. 

Therefore, we are motivated to shrink this knowledge gap, provide important 

evidence on the impact of scientific travels, and support the decisions of science 

policy.  

In the following sections, the analysis associates the travel experiences with 

scientists’ performance, adjusted by individuals’ contributions, and eventually offers 

a novel insight for related research in scientific mobility and enriches the framework 

of facilitymetrics. 

Data & Method 

Publication Library and Open Dataset 

The scientific published data collection processes in the framework of 

Facilitymetrics are quite different since the special features of Big Science Facilities 

and should be noted. The traditional method, the retrieval query, was proved 

unsuitable due to lack of coverage and accuracy. If the published data were retrieved 

from Web of Science Core Collections (WoSCC) or Scopus, the fields of Affiliation 

Address and Funding Text should be applied. However, retrieving by Addresses 

might only lead to those publications at least authored by one staff who is affiliated 

with the focal facility while retrieving by Funding Text shall lead to those 

publications authored by external users, but the expressions of acknowledgments are 

not identical, and not all users acknowledged the focal facility in their publications 

(Silva et al., 2019; Söderström, 2023a, 2023b).  

However, almost all Big Science Facilities around the globe have constructed their 

own bibliographic library to index their supporting scientific publications, and these 

libraries can be found and accessed on their official websites. Such libraries are 

considered one of the ways to make the scientific performance of big science 

facilities public and visible, responding to the concerns of policymakers, 

governments, and the public as taxpayers. Moreover, these libraries served an 

entrance for globally potential users to know the technological abilities and previous 

knowledge explored by the focal facility. Correspondingly, these libraries are 

considered self-constructed databases in the framework of Facilitymetrics, which 

highly facilitates the procedures of data collection. 
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We selected SLSs as our focal type of big science facilities in this work, a widely 

discussed type to be explored in Facilitymetrics, as abovementioned. SLSs are 

considered scientific platforms with advanced experimental technologies for almost 

all disciplines of science, especially material science, biology, physics, and 

chemistry. Concurrently, about 50 SLSs are operating or under construction around 

the world. Based on the expertise from China Big Science facilities and the guidance 

of the LightSources website1, we constructed a publication dataset including about 

240,000 scientific articles supported by 41 SLSs by exporting or crawling their self-

constructed databases one by one. The remained 9 facilities have not constructed a 

mature database or have not been applied to support scientific research, and therefore, 

our dataset excluded them. For those collected facilities, not every SLS has operated 

for decades and possesses enough beamtime and experimental volume for global 

users. Therefore, in this study, we only considered the Top 20 SLSs (covered about 

80% of publications) in productivity as analytical cases for better data quality. The 

selected big science facilities with their location, beginning year, and productivity 

(Final results after cleaning and matching with supplemental database by Python 

3.11) are shown in Table 1.  
 

Table 1. Selected Big Science Facilities (Top 20) and the Details of Publications. 

No. Facility Located Country/Region Begin Year Number of Publications 

1 ESRF  France 1986 26,544 

2 APS USA 1970 25,492 

3 PETRA Germany 1986 25,115 

4 SPring-8 Japan 1999 12,922 

5 ALS USA 1991 12,733 

6 PF Japan 1972 11,091 

7 Diamond UK 2001 9,844 

8 NSLS-II USA 1984 9,005 

9 SSRF China 2000 8,207 

10 MLS Germany 1964 7,336 

11 SSRL USA 1983 5,731 
12 AS Australia 2006 5,659 

13 NSRRC Taiwan (China) 2003 5,629 

14 BESSY Germany 1992 5,621 

15 PLS Korea 2008 5,585 

16 ELETTA Italy 1994 5,182 

17 NSRL China 1984 4,821 
18 LNLS Brazil 1987 4,514 

19 SOLEIL France 2012 3,692 

20 MAXIV Sweden 1983 3,199 

Total Data 197,618 

 

                                                
1 https://lightsources.org/ 
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It should be noted that every self-constructed database provides different structures 

of metadata, and the data framework is also differentiated, which highly challenges 

further data processing and limits our perspectives if we do not introduce 

bibliographic databases as supplemental data sources. Therefore, we used the 

OpenAlex database as a supplement to introduce more metadata by matching DOI 

and Title of published records collected from Top20 facilities’ self-constructed 

databases. OpenAlex is a fully open database of the global research system with 

advantages in terms of inclusivity, affordability, and availability, and it is widely 

used in current research related to the science of science (Priem, Piwowar, & Orr, 

2022). 

Measures 

We applied a 5-year Disruptive Index (DI5) and Novelty Metrics, mainly Novelty 

Score (NS), as dependent variables to measure the scientific performance with the 

positive probabilities and Author Contribution (AC) adjusting mean value quantified. 

Moreover, we defined a new metric named the cutting-edge ability, which tells the 

boundaries-pushing by users’ research to a focal facility by measuring the similarity 

with previous knowledge based on the Jaccard Similarity. Additionally, we set up a 

framework including several potential indicators to measure the correlations and 

regression relationships, for instance, the number of Traveled places, Traveled Times, 

resources of the network, and several involved knowledge topics. Details of our 

measurements are introduced as follows. 

Scientific Performance 

The Disruptive Index was proposed by Funk and Owen-Smith (2017) as CD-index 

and received a update by Lingfei Wu, Wang, and Evans (2019). It quantifies how 

one paper disrupts the current knowledge system according to the citation 

relationship. The illustration and formula are shown as follows: 

 

 

Figure 1. Illustration of Disruption Index. 
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(1)Disruption Index =
Nr − Ny

Nr + Ny + Ng
 

For every focal paper (blue node in Figure 1), 𝑁𝑟  represents the number of red 

triangles in Figure 1, measuring the citing publications that only cite the focal paper 

but do not cite its references, and the references of focal paper are displayed by 

purple rhombuses. 𝑁𝑦 records the number of yellow triangles, telling those citing 

publications not only cite the focal paper but also cite its references while 𝑁𝑔 means 

the number of citing publications that only cite the references of focal paper and 

colored in green in Figure 1. According to the formula, we could tell that the value 

should range from [-1, 1], and all red triangles lead to 1, indicating that the focal 

paper might create a new orientation in the current knowledge system, while all 

yellow triangles lead to -1, meaning that the focal paper might be a consolidative or 

developmental for its focal knowledge field. Therefore, if the value of DI was no less 

than zero, the focal paper was supposed to be disruptive. Otherwise, the focal paper 

was considered consolidating. 

It is also obvious that DI might be influenced by the number of references, times 

cited, and the citation window. Therefore, we have set a 5-year citation window with 

at least five references and five citations as thresholds to ensure stability. 

Novelty Metrics, consisting of Novelty Score and Conventionality Score, was 

proposed by Uzzi, Mukherjee, Stringer, and Jones (2013). It has introduced the 

concept of cited journal combinations to measure the focal paper’s knowledge novel 

degree from the knowledge input perspective. The key step of the Novelty Score is 

the calculation of the Z-score, and the formula is shown as follows: 

(2)Z =
(obs − exp)

σ
 

Every cited journal combination could be calculated a Z-score, and 𝑜𝑏𝑠  is the 

observed frequency of the focal cited journal pair while 𝑒𝑥𝑝 is the mean frequency 

of all cited journal pair and 𝜎 Represents the standard deviation of the number of 

journal pairs obtained from 10 randomized simulations of paper-to-paper citation 

network. Therefore, for one focal paper, its references and corresponding cited 

journal combinations could be found, and the Z-score of each combination could be 

sorted from the lowest to the highest, 10th percentile Z-score is selected to represent 

the Novelty Score while the median Z-score is used to represent Conventionality 

Score. 

Both Indicators, DI and NS, are widely explored and applied concurrently, and we 

applied them as two aspects of scientific performance to quantify the differences 

between scientific travelers and locals. 

Author Contribution 

We introduce a coefficient to adjust the evaluations of the author-level’s scientific 

performance since this work mainly focuses on the scientific performance at the 

author-level (Zhang et al., 2024). We suppose that it is unsuitable to simply take the 

paper-level performance of an author in one specific year or during the total career 
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as his or her performance, especially concurrently, scientific collaborations are 

widespread, and scientists have a higher possibility to produce more than one papers 

in a year than before, leading to a situation that one scientist might distribute his or 

her efforts into several works simultaneously but unevenly. Therefore, we first 

filtered our data to retain those publications of teamwork and calculated the author 

contribution as an adjusting coefficient based on the method of proportional count 

and the hypothesis of cost-benefit perspective by measuring one author’s rank in the 

team considered (VanHooydonk, 1997). The formula for Author Contribution is 

shown as follows: 

 

(3)Author Contribution =  
(N + 1) − ASa

∑ ASN
1

 

In formula (3), denoted 𝑁 is the number of co-authors in one scientific team, while 

𝐴𝑆 is the focal authors’ sequence. If four authors collaboratively published one paper, 

the first author’s credit should be 0.4, the last author’s credit should be 0.1, and the 

two middle authors’ credit should be 0.3 and 0.2, respectively. It is noted that this 

indicator is based on author sequence, which might overlook the contributions of 

corresponding authors of scientific teams. However, we suppose that the overlook 

might not cause heavy variations, and it is the most suitable choice. Firstly, the role 

of corresponding authors is difficult to identify in the level of publication data, and 

not all corresponding authors are always placed at the last. Moreover, corresponding 

authors usually have a higher tendency to publish more articles in one year or during 

the career than the first author and other authors, which well-matched our hypothesis 

that the efforts of the last author (if he or she is the corresponding author of his or 

her team) might be further distributed. If not, the last authors might be the lowest 

contribution author in the team. 

We applied this coefficient to paper-level indicators of scientific performance and 

considered the mean values and positive probability of scientific performance 

adjusted by author contribution as the scientific performance of the focal author in 

one-year, total career, or for a specific time stage. The formulas of mean value and 

positive probability are as follows: 

(4)Meanj =  
∑ (AC × Pi)

N
i

N
 

(5)Probj =  
Npositive

N
 

In formulas (4) and (5), denoted 𝑗 is the period of scientific performance and 𝐴𝐶 is 

the focal author’s credit in one paper and 𝑃𝑖  is the scientific performance of 

corresponding paper. 𝑁  should be the number of published articles of the focal 

author during the period 𝑗. 𝑁𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  refers to the situation that 𝐷𝐼5 ≥ 0 or 𝑁𝑆 ≤ 0 

and the probability does not need to be adjusted by author contribution since the sign 

will not change. 
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Traveled Places 

The dataset of big science facilities’ publications collected by us previously offers 

an even micro perspective to define the processes of scientific mobility since every 

facility requires users to conduct their experiments on-site. This context assists us in 

defining the role of scientific travelers and locals. We firstly confined that the focal 

authors should be external users of big science facilities, and if they have used more 

than one facility in a specific period, they should be scientific travelers. Otherwise, 

they are locals. The identification of the used facility is according to the relationships 

of focal author’s publications with self-constructed databases. If one author’s 

publication during a specific period is collected from more than one self-constructed 

database of facilities, we can tell that he or she should be a traveler since more than 

one facility is used. Therefore, the number of traveled places is considered as the 

number of used facilities in one year or during a specific period.  

It should be noted that, according to our previous studies, the co-utilization between 

or among these big science facilities is uncommon but possible. Given that there is 

a co-utilized author who only published one publication but could be observed to use 

more than one facility. Such a situation is complicated and out of our research range, 

therefore, during the data cleaning, we have already dropped out those publications 

supported by more than one facility. It also means that Travelers should publish at 

least two articles in the focal period. 

Other Important Indicators 

We also define other indicators to finish further processes of visualization, 

correlations, and regression. Firstly, we proposed the volume of one author’s 

network resources and involved knowledge topics from paper-level indicators by 

measuring the number of collaborative peers and published topics in a specific 

period. Secondly, we considered the productivity and the mean values of 𝐴𝐶 

adjusted scientific impacts in one year and ten years to describe their impacts 

immediately and in the long term.  

Furthermore, based on the Jaccard Similarity, we define the 𝐴𝐶 adjusted knowledge 

similarity by measuring the number of new topics in one publication compared with 

the using facilities’ previously published topics numbers and considered the mean 

values to represent the performance of the focal author. The formula is shown as 

follows: 

(6)Knowledge Similarity =
|T̅i,j ∩ T̅k,j−1|

|T̅i,j ∪ T̅k,j−1|
 

Denoted paper 𝑖 published in 𝑗 year supported by facility 𝑘, and �̅�𝑖,𝑗  refers to the 

research topics of focal paper while �̅�𝑘,𝑗−1 refers to research topics the focal facility 

has researched. Both sets of topics are provided by OpenAlex. Then, the paper-level 

similarity with pervious knowledge could be calculated and after adjusting by 𝐴𝐶, 

the mean values are used to indicate author-level performance during a specific 

period. 

Additionally, we define the level of localization for travelers by measuring the ratio 

of local productivity and global productivity. Formulas are shown as follows: 
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(7 − 1)Localization Ratioj =  
Local Productivityj

Total Productivityj
 

(7 − 2)Divide Thresholdsn1 =  min
n

LRj + (max
n

LRj − min
n

LRj)/3 

(7 − 3)Divide Thresholdsn2 =  max
n

LRj − (max
n

LRj − min
n

LRj)/3 

(7 − 4)Localization Level = {

Low, min
n

LRj ≤ LRj ≤ DTn1

Moderate, DTn1 < LRj < DTn2

High, DTn2 ≤ LRj ≤ max
n

LRj

 

We first calculate the focal traveler’s Localization Ratio in every used facility during 

the period 𝑗, and then find the lowest ratio and highest ratio of localization with the 

number of traveled facilities (denoted 𝑛 in the formula 7-2 and 7-3) for all focal 

travelers during the period j considered. The divide thresholds could be found, and 

all focal travelers could be classified into different groups of Low, Moderate, and 

High according to the formula (7-4). 

Results 

We provided several perspectives related to the performance gap between scientific 

travelers and locals with multiple classifications applied to verify the robustness of 

our results. In the section of Results, we mainly classify external users into travelers 

or locals at the yearly level. The results by classifying at the level of total career or 

the level of past experiences are shown in the appendix, and all results are consistent, 

indicating the robustness of our discoveries and contributions. Moreover, the 

appendix also contains several figures for data distribution, which assisted us in 

setting thresholds for data filtering for better data quality. 

Scientific Performance Gaps Between Travelers and Locals 

According to Figure A1(A) and the definition of travelers abovementioned, the 

productivity of travelers and locals mainly distribute less than 15 articles, and 

therefore, we only considered those scientists’ yearly productivity range from 2 to 

15. From Figure A1(B), we can tell most scientists’ career age is no more than 30 

years, which leads to another threshold. Figure A1(C), displays the annual average 

credit differences between travelers and locals, and the value of author contribution 

is highly related to team size that we have confined that the number of co-authors in 

one article should be less than 45. 

Figure A2 shows the tendency of modern science that the connections in global 

academia are increasingly close. As time goes on, more scientists tend to travel 

around, and concurrently the ratio of travelers in one year has reached 0.4. Figure 

A2(A) and A2(C) show similar results that middle-aged scientists have a higher 

possibility to travel to more than one facility, and junior scientists might lack travel 

chances. 
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Figure 1. Travelers Associated with Better Novelty while Locals Produce More 

Disruption. Travelers and Locals are classified at the yearly level. 

 

Under such context, Figure 1 mainly shows the basic results of this study that 

scientific travelers negatively related to disrupting the current knowledge systems 

while their works possess higher scientific novelty than locals. Figure 1(A) shows 

the gap of positive probability (K-S Test, p<0.000) between locals and travelers in 

scientific performance (103,359 Locals and 40,854 Travelers in the Sample of DI5 

while 142,420 Locals and 61,522 Travelers in the Sample of NS), and 1(B) and 1(C) 

display the mean value distribution of scientific performance indicators while 1(F) 

records the significant differences (K-S Test, p<0.000) of mean values between 

travelers and locals that locals still perform better at disruption but lack of knowledge 

novelty (Samples are consistent). 1(D) and 1(E) show the positive relationships 

between positive probability and career age. 

Consistent results are also displayed in Figure A3 and Figure A4. Figure A3 

classified all external users into “Never Traveled” and “Traveled” according to their 

travel experiences at career level, while Figure A4 identified “Un-Traveled” and 

“Over-Traveled” by yearly measuring whether the focal scientists have traveled or 

not in the past. For instance, given that there is one user (U) and he or she first 

traveled in 2000, leading to he or she is considered as an “Un-Traveled” before 2000, 

as an “Over-Traveled” current and after 2000. The results of the three classifications 

with their positive probabilities and mean values are consistent. 
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Figure 2. More Travels Lead to Negative Disruptive Ability but Positive Scientific 

Novelty. 

 

Figure 2 displays relationships between the number of traveled facilities for scientists 

during their total career and in one year. The red color represents the variation of 

Disruptive Probability while the blue color shows the variation of Novelty. From the 

perspective of academic career, those locals might suffer from a low probability of 

novelty (about 0.4) but benefit from a high disruptive probability. The thresholds of 

traveled facilities numbers were selected by referring to Figure A5. 

The Impacts of Localization 

Denoted that the ratio of localization level describes the degree of concentration and 

dispersion of scientific travelers by measuring their local productivity and global 

productivity. If one traveler is observed with extremely skewed productivity in the 

minor facility, he or she might be a highly localized traveler. Here, we mainly 

classified scientists by their annual productivity, and the results of career-level 

productivity are shown in Figure A6. 
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Figure 3. High Localization Travelers Produce More Disruption while Low 

Localization Travelers Associated with More Novelty. 

 

Figure 3(A) displays the classifications of localization level with the number of 

traveled facilities considered. The threshold of traveled facilities numbers is also 

referred to in Figure A5. If one traveler’s productivity ratio in any facility he or she 

used in the focal year drops in the red range, he or she is classified into high 

localization. Similarly, moderate and low levels of localization could be identified. 

In the sample of DI5, 14,100 year-level Travelers are classified as High, 24,224 are 

classified as Moderate group, and 2,529 are classified as Low group. In the sample 

of NS, 20,418 year-level travelers are high localized, 37,023 are moderate, and 4,078 

are low localized. In Figure 3(B) and Figure 3(C), results indicate that high localized 

travelers are associated with better disruptive performance than low localized 

counterparts while opposite results of novelty score. The performance gaps between 

different levels of localization are significant according to the K-S Test (p<0.000 for 

High-Moderate and Moderate-Low test when considering the positive probabilities 

of DI5 and NS and the mean value of NS; p<0.1 for Moderate-Low test and p<0.05 

for High-Moderate test when considering the mean values of DI5). Figure A6 shows 

similar results that those scientists who traveled to several facilities during their 

career but have extremely skewed preferences might produce more disruptive 

knowledge while those who are not skewed in productivity might produce more 

novel knowledge. These two figures record the performance gap between travelers 

and if we take corresponding locals as controls to compare with, results support that 
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highly localized scientists produce less disruption knowledge but still better novelty 

than totally localized scientists. 

The Impacts of Travel Experiences 

In this subsection, we mainly focus on those scientists with travel experiences, and 

for the sake of improving the inclusive, we also included those travelers who have 

already localized and annually produced only one article in the local year. 

 

 

Figure 4. Travel Experience Damage Locals’ Disruptive Ability but Increase Novelty. 

 

Figure 4 displays evidence to understand how travel experiences will affect scientists’ 

scientific performance. Firstly, Figure 4(A) shows the concurrent yearly 

performance variation of travelers in the travel year, indicating that more traveled 

experiences might decrease the probability of disruption but increase the novelty 

probability. Comparing the career-level performance of those scientific travelers 

when they are locals (Never Traveled to another facility, 62,480 year-level scientists 

for DI5 and 65,997 for NS) and once traveled (at least traveled to two facilities 

previously, 42,114 year-level scientists for DI5 and 75,717 for NS), and the results 

of comparisons are recorded in Figure 4(B). It is shown that the probability of 

disruption suffers from slight damage (KS-test: p<0.000, T-test: p=0.854) while 

novelty probability is observed a significant improvement (KS-test: p<0.000). The 

following figures could assist in understanding such a situation in Figure 4(C), we 

observed that for those travelers, once they have finished a one-year travel and are 

back to local scientists, their disruptive probabilities will increase as the local year 

goes on, but their probability of novelty might slowly decrease since total 

localization. However, the novel ability of these fully localized travelers is still much 

better than that of those locals without travel experiences. To better display the 
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variations, ensure data quality, and compare with those travelers’ counterparts, we 

mainly focus on the impact of the first four times travel experience and display 

travelers’ average travel career age as shown in Figure 4(D). Later, we take these 

mean values as the representative travel career ages by rounding down, considering 

the next year should be the first local year of those travelers who finished scientific 

travel, and select those locals with identical career ages as the control group to 

compare the subsequent years’ performance whether a scientist chose to travel or not. 

Results are shown in Figure 4(E) and Figure 4(F), with the cumulative probability of 

relative disruption and novelty visualized. We consider those corresponding years’ 

performance of locals as a baseline and compare it with the travelers’ yearly 

scientific performance after their travels at different times. Then, the relative 

probability of positive scientific performance could be calculated, and eventually, 

the cumulative value could be found. From the abovementioned results, it is reported 

that scientific travel might decrease scientists’ disruptive ability, and their disruption 

might increase gradually as they localized. However, Figure 4(E) argues that those 

scientists with travel experiences might slowly surpass their peers without travel 

experiences in disruptive ability as time goes on, especially those scientists with 

more than one-time travel experience, and the surpass year will become earlier if one 

traveler has traveled around for times. Figure 4(F) indicates that those scientists with 

travel experiences could significantly outperform their peers in producing novelty 

knowledge. 

Alternative Indicators Differences between Travelers and Locals 

Several factors might affect the performance gaps between travelers and locals with 

respect to previous knowledge. We aim to shrink such potential impacts and validate 

our results. Therefore, we visualized differences between travelers and locals in 

alternative indicators.  

 

 

Figure 5. Alternative Indicators Differences Between Locals and Travelers. 

 

Figure 5 tells the scientific input gaps between travelers and locals in annual network 

resources and involved knowledge topics and displays the output-level gaps in 

productivity, short-term and long-term impact, and the similarity with previous local 

knowledge. The values are normalized by us to reach a better visualization, and the 

times of normalizations are recorded following all indicators in the Figure. Locals 

might receive more short-term citations, while in the long term, travelers might have 

higher scientific impacts. Travelers might also perform better in expanding the 
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knowledge edge for the facility they are using since they have lower similarity with 

previous knowledge than locals. 

Note that the annual volume of network resources represents the number of 

collaborators for a focal scientist in one year, and the annual volume of involved 

knowledge topics records the number of research topics the focal scientists have 

published. Both are reported to affect the scientific performance at the paper level 

and therefore, we put emphasis on them to avoid potential impacts on author-level 

performance and the results are shown in Figure 6. 

 

Figure 6. The Effects of Network and Involved Knowledge Topics on Scientific 

Performances. 

 

Figure 6(A) and Figure 6(B) record the impact of small or large volumes of network 

resources on the scientific performance of travelers and locals, respectively. The 

classifications of small or large volumes refer to the distributions shown in Figure 

A7(A), and we take mean values (locals: 12 and travelers: 16) as boundaries. Even 

though a large volume of network resources might influence disruptive ability 

negatively and positively related to novel knowledge, the performance gaps between 

locals and travelers could still be observed that locals perform better in disruption 

while travelers could produce more novel knowledge. Similar tendencies could be 

discovered in Figure 6(C) and Figure 6(D) that if we control the impacts of involved 

knowledge topics (boundaries could be referred to in Figure A6(B)), locals still 

perform better in disruption, and travelers possess advantages in novelty. 

Regression Analysis to validate 

To validate the main results of this study, we conduct the Paper-level and author-

level Ordinary Least Squares (OLS) regression to ensure the impacts of scientific 

travels on scientific performance. Table 2 displays the paper-level results with two 

corresponding indicators considered as independent variables respectively (the ratio 

of travelers and the total contribution of travelers in the focal academic team) and 

potentially influential variables controlled.  

Specifically, we select Team Size (at least two co-authors), Number of References 

(at least five references), and Cited Topics as control variables for disruption index 

and novelty score according to our previous visualizations. Times Cited5, a widely 

demonstrated impactful indicator on DI5, is considered a unique control variable for 

disruptive index with a five-year citation window and at least five citations confined 

while the published year is customed for novelty score since the ability to advance 

knowledge might be affected by the level of scientific development. Moreover, we 



1573 

 

consider the supporting facility of each publication as a dummy variable to avoid 

potential influence caused by different levels among technologies. 

In the paper level, Table 2 demonstrates the negative impact of Travelers 

participating in the scientific team on disruptive ability as their ratio (β=-0.007, 

p<0.001) or contribution (β=-0.006, p<0.001) improving. The results in Table 2 also 

ensure the positive effects of Travelers on producing more novel knowledge, given 

that the lower value of Novelty Score represents better Novelty, and the increasing 

ratio and contribution of travelers could significantly improve research novelty. All 

regression models are significant according to F-scores and corresponding 

significances.  
 

Table 2. Paper-level OLS regression with Indicators Related to Travelers in Teams 

Considered as Independent Variables. 

Models (1) (2) (3) (4) 

DI5 DI5 NS NS 

Travelers Ratio -0.007*** 

(0.001) 

 -17.229*** 

(0.790) 

 

Travelers 

Contribution 

 -0.006*** 

(0.001) 

 -16.007*** 

(0.815) 

Team Size -0.000*** 

(0.000) 

-0.000*** 

(0.000) 

-0.029 

(0.037) 

-0.032 

(0.037) 

Number of 

References 

-0.000*** 

(0.000) 

-0.000*** 

(0.000) 

-0.125*** 

(0.009) 

-0.127*** 

(0.009) 

Cited Topics 0.000*** 

(0.000) 

0.000*** 

(0.000) 

-0.292*** 

(0.012) 

-0.290*** 

(0.012) 

Times Cited5 0.000*** 

(0.000) 

0.000*** 

(0.000) 

  

Published Year   0.153*** 

(0.029) 

0.139*** 

(0.029) 

Constant 0.008*** 

(0.000) 

0.008*** 

(0.000) 

-271.957*** 

(57.477) 

-245.150*** 

(57.435) 

Dummy Big science facility 

Adj. R2 0.064 0.064 0.036 0.036 

F-score 208.9*** 207.3*** 156.3*** 152.5*** 

Obs. 72,896 72,896 99,425 99,425 

Standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Author-level regressions could help to understand how scientific travels will 

influence scientific performance, as shown in Table A1 and Table A2. Both tables 

record the OLS regression results in the author-level performance evaluations but 

different from yearly and career perspectives, respectively, with a binary variable 

(Travelers: 1, Locals: 0) considered as the independent variable and career age, 

productivity, network resources, and involved topics controlled according to 

previous visualizations. 
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In Table A1, we conduct a yearly analysis which is consistent with our main figures, 

and results demonstrated that travelers negatively related to disruptive knowledge 

(β=-0.022, p<0.001 in ProDI5 and β=-0.041, p<0.001 in MeanDI5) but positively 

related to novel knowledge (β=0.037, p<0.001 in ProNS and β=-1.107, p<0.001 in 

MeanNS). Table A2 applied a career perspective that validate the robustness of our 

result that travelers still disadvantage in producing disruptive knowledge (β=-0.024, 

p<0.001 in ProDI5 and β=-0.051, p<0.001 in MeanDI5) but associated with more 

novelty (β=0.044, p<0.001 in ProNS and β=-1.544, p<0.001 in MeanNS). 

Discussion and Conclusion 

This study provides a more micro and, therefore, more novel perspective to identify 

the impacts of short-term scientific travels on individuals’ scientific performance, 

quantified by disruptive index and novelty score, discovered that travelers might 

disturb scientists’ ability to produce disruptive knowledge but enhance their novelty 

ability in return. The micro identification is beneficial from the features of utilizing 

big science facilities, mainly the characters of external users and on-site experiments. 

Results classified two types of external users (travelers and locals) by multi-

approaches from yearly, previous, and career perspectives, and all results are 

consistent to show locals associated with higher disruption while travelers perform 

better in novel knowledge production. Further results indicate that the performance 

loss of travelers in disruption is mainly short-term, and the last of the period 

averagely depends on their travel times. We observed that their disruptive ability 

might increase and even surpass those peers without travel experiences since they 

have finished their scientific travels and become local users as time goes by. The 

novel abilities of Travelers are observed to be significantly higher than those of locals 

in different classifications. Additionally, we conduct OLS regressions at the paper 

level and author level, respectively, to validate the robustness and consistency of our 

results. The results of causal inference provided further evidence to support our main 

conclusions. 

The micro-level identification has enriched the extant research in scientific mobility 

associated with scientific performance since our methods make use of the features in 

big science facilities context, and the results could be extrapolated to similar 

situations such as visiting scholars, attending conferences, and any other activities 

for scientific communication and collaboration without affiliated information to be 

identified. After all, we propose positive evidence to those policies encouraging 

scientific mobility and scientific communication, and we demonstrate that in long-

term scientific’ careers, those travelers could produce novel knowledge easier than 

those scientists without travel experiences but insignificantly suffer from the loss of 

disruptive ability. 

This study also has several limitations. Firstly, the loss of data should be noted, and 

the volume of published records is limited by the operating years and experimental 

volumes of big science facilities for external users. The process of data collection 

also receives lots of challenges due to one facility having one customed database, 

and some of them provide low-quality publication data. Therefore, we only take 

about 210,000 articles as the sample, which might shrink the applied scope of results. 
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Secondly, concurrently, most advanced facilities located in developed countries or 

regions and open to their citizens might be the priorities, leading to the scientific 

contributions from global south might be overlooked potentially. We highly 

recommend future research focusing on related issues and providing more solutions. 
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Appendix 
 

Table A1. OLS Regression of Scientific Performance at the Level of Publish Year. 

Models (1) (2) (3) (4) 
ProDI5 MeanDI5 ProNS MeanNS 

T1L0 -0.022*** 

(0.001) 

-0.041*** 

(0.003) 

0.037*** 

(0.001) 

-1.107*** 

(0.039) 

Career Age of the year 0.003** 

(0.001) 
-0.020*** 
(0.003) 

0.029*** 
(0.001) 

-0.068*** 
(0.003) 

Annual Productivity -0.066*** 

(0.002) 

-0.072*** 

(0.005) 

-0.031*** 

(0.002) 

0.276*** 

(0.017) 
Annual Network Resources 0.009*** 

(0.001) 

0.019 *** 

(0.003) 

-0.008*** 

(0.001) 

0.000*** 

(5.83e-05) 

Annual Involved Topics 0.084*** 

(0.002) 

0.095*** 

(0.005) 

0.032*** 

(0.001) 

-0.177*** 

(0.010) 
Constant 0.524*** 

(0.001) 

0.000 

(0.003) 

0.443*** 

(0.001) 

3.498*** 

(0.042) 

Adj. R2 0.017 0.004 0.020 0.011 
F-Score 486.6*** 130.6*** 854*** 460.1*** 

Obs. 144,213 144,213 203,942 203,890 

Standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001. All Independent 

variables are standardized to mean zero and S.E. 1, and for better discoveries in data, we 

also standardized the dependent variables of MeanDI5. T1L0 is a binary variable that 

denoted Travelers as 1 while Locals as 0 
 

Table A2. Robustness Check of Scientific Performance at the Level of Author Career 

Age. 

Models (1) (2) (3) (4) 

ProDI5 MeanDI5 ProNS MeanNS 

T1L0 -0.024*** 
(0.002) 

-0.051*** 

(0.004) 
0.044*** 
(0.001) 

-1.544*** 
(0.060) 

Career Age 0.005** 

(0.002) 

0.005 

(0.004) 

-0.007*** 

(0.001) 

-0.013* 

(0.007) 

Total Productivity -0.028*** 

(0.002) 
-0.029*** 
(0.006) 

-0.015*** 
(0.002) 

0.018*** 
(0.004) 

Total Network Resources -0.004** 

(0.001) 

0.012** 

(0.004) 

-0.015*** 

(0.001) 

0.000*** 

(2.15e-05) 
Total Involved Topics 0.041*** 

(0.002) 

0.048*** 

(0.006) 

0.020*** 

(0.002) 

-0.023*** 

(0.003) 

Constant 0.525*** 

(0.001) 
0.000 

(0.004) 
0.430*** 
(0.001) 

3.521*** 
(0.044) 

Adj. R2 0.008 0.003 0.018 0.011 

F-Score 110.1*** 43.89*** 327.8*** 201.9*** 

Obs. 67,441 67,441 89,963 89,911 

Standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001. All Independent 

variables are standardized to mean zero and S.E. 1, and for better discoveries in data, 
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we also standardized the dependent variables of MeanDI5. T1L0 is a binary variable 

that denoted Travelers as 1 while Locals as 0 

 

 
Figure A1. Probability of Travelers and Locals Yearly Productivity, Career Age, and 

Averagely Collaborative Contribution. Therefore, we selected those authors whose 

one-year productivity no more than 15, career age no more than 30 and limited the 

team size of published records less than 45 due to credits of Author Contribution. 

 

 
Figure A2. Probability of Traveler and Locals/Non-Travelers. 

 

 
Figure A3. Identical Differences in Performance Between Locals and Travelers in 

Career Scale. Denoted “Never Traveled” represents those scientists who used only 

one facility during the career while “Traveled” means those scientists who used at 

least two facilities during the career. 
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Figure A4. Identical Differences in Performance Once Scientific Travel Appeared. 

Denoted “Un-Traveled” represents those scientists have not used more facilities and 

“Over-Traveled” represents those scientists have used more facilities. Once the 

author used more than one facility, the author would be considered from “Un-

Traveled” to “Over-Traveled”. 

 

 
Figure A5. Probability of Traveled Facility Numbers for Scientists during Career and 

Yearly. We selected the thresholds as no more than seven facilities during career and 

no more than five facilities in One-Year. 



1581 

 

 

Figure A6. Performance of Travelers with Different Localization Levels in Career 

Scale. Performance gaps are consistent and more obvious in the career scale and high 

localized travelers associated with better disruption but lower novelty. 

 

 
Figure A7. Performance of Travelers with Different Localization Levels in Career 

Scale. We considered 12 and 16 respectively for locals and travelers as thresholds to 

divide their volume of network resources. Six and Seven are respectively take as 

thresholds to divide the annually volume of involved knowledge topics for locals and 

travelers. 


