
1745 

https://doi.org/10.51408/issi2025_020 

The Increasing Fragmentation of Global Science Limits the 
Diffusion of Ideas 

Alexander J. Gates1, Indraneel Mane2, Jianjian Gao3 

1agates@virginia.ed at 

School of Data Science, University of Virginia, Charlottesville, Virginia (USA) 

2maneindraneel@gmail.com at 

Network Science Institute, Northeastern University, Boston, Massachusett (USA) 

3psp2nq@virginia.edu at 

School of Data Science, University of Virginia, Charlottesville, Virginia (USA)                             

Abstract 

The global scientific landscape emerges from a complex interplay of collaboration and competition, 

where nations vie for dominance while simultaneously fostering the diffusion of knowledge on a 

global scale. This raises crucial questions: What underlying patterns govern international scientific 

recognition and influence? How does this structure impact knowledge dissemination? Traditional 

models view the global scientific ecosystem through a core-periphery lens, with Western nations 

dominating knowledge production. Here, we investigate the dynamics of international scientific 

recognition through the lens of citation preferences, introducing a novel signed measure to 

characterize national citation preferences and enabling a network analysis of international scientific 

recognition. We find that scientific recognition is related to cultural and political factors in addition 

to economic strength and scientific quality. Our analysis challenges the conventional core-periphery 

narrative, uncovering instead several communities of international knowledge production that are 

rapidly fragmenting the scientific recognition ecosystem. Moreover, we provide a comprehensive 

statistical model that shows this network significantly constrains the diffusion of ideas across 

international borders. The resulting network framework for global scientific recognition sheds light 

on the barriers and opportunities for collaboration, innovation, and the equitable recognition of 

scientific advancements, with significant consequences for policymakers seeking to foster inclusive 

and impactful international scientific endeavours. 

Introduction 

The global scientific research ecosystem is shaped by the emergent interplay between 

international collaboration, competition, and recognition, which collectively drive 

the diffusion of ideas and the cross-border flow of knowledge (Hagstrom, 1974; 

Chinchilla-Rodr´ıguez et al., 2019; Marginson, 2022a). Strong national research 

infrastructures empower nations to vie for competitive advantages in technology, 

economics, security, and health. Concurrently, scientific knowledge flows on a 

global scale, with scientific ideas disseminating from their nation of origin and 

influencing research around the world. This diffusion and adoption of scientific 

information transcends national boundaries, forming a global network of scientific 

recognition and influence. However, the strength of influence is not uniform across 

all communities, leading to status stratification where nations are differentially 

recognized for their scientific contributions (Moravcsik, 1985; Schott, 1998; Galvez 
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et al.´, 2000; Tickner, 2013; Collyer, 2014; Gomez et al., 2022). This raises two 

central questions to be explored: What structural patterns underlie international 

scientific recognition and influence? and What are the consequences of that structure 

for knowledge dissemination? 

The prevailing theories for the structure and consequences of global scientific 

recognition closely mirror economic models, with a clear hierarchy and power 

dynamics between the “core” of scientific knowledge production and its “periphery” 

such that certain regions or countries dominate the production and dissemination of 

scientific research while others occupy a peripheral or marginalized position 

(Prebisch, 1962; Shils, 1975; May, 1997; King, 2004; Zelnio, 2012). This core-

periphery structure is hypothesized to have important consequences for international 

science by hindering diverse perspectives and knowledge diffusion. The core-

periphery model tends to oversimplify the complex relationships between nations, 

reducing influence dynamics to a binary classification of ‘core’ or ‘periphery’, while 

overlooking the nuances and inter-dependencies that shape global science (Schott, 

1988a). By relying on this model, policy and funding decisions risk becoming 

skewed in favor of established centers, reinforcing existing national disparities. Core 

countries dominate research agendas and attract greater resources, while peripheral 

regions struggle to keep pace, further entrenching their marginal position in the 

global scientific network (Sumathipala et al., 2004; Kozlowski et al., 2022; Abramo 

et al., 2020; Heimeriks and Boschma, 2014). 

Quantitative support for the core-periphery structure of global scientific recognition 

is evident across various dimensions of academic activity, including international 

collaboration, researcher mobility, and citation patterns. For example, international 

collaboration networks show that core countries have higher degrees of centrality 

and connectivity than periphery countries, indicating their dominant role in global 

science (Leydesdorff and Wagner, 2008; Zelnio, 2012; Gui et al., 2019; Choi, 2012; 

Wagner et al., 2015), and the global embeddedness of a nation, quantified by 

proportion of internationally co-authored publications, is a significant predictor of 

traditional scientific impact (Wagner and Jonkers, 2017). Additional analysis 

utilizing hierarchical clustering and dominant flow methodologies on international 

collaboration networks suggest that the global scientific community consists of four 

tiers: core, strong semi-periphery, semiperiphery, and periphery (Gui et al., 2019). 

Under this model, the United States consistently occupies the core, maintaining 

collaborations with nearly every major scientific nation, while emerging powers like 

China and South Korea have only recently ascended to the core. Mobility patterns 

also reveal that core countries attract more foreign scientists and researchers than 

periphery countries, suggesting their greater availability of resources and 

opportunities (Freeman, 2010; Scott, 2015; Adams, 1998; Urbinati et al., 2021; 

Bauder et al., 2018). Scott (2015) refers to this phenomenon as “hegemonic 

internationalisation” where internationalization becomes an extension of global 

inequality and the struggle for dominance, driven by competition, rankings, and the 

concentration of academic power in certain geopolitical centers. Analysis of raw 

citation networks further demonstrate that core countries generate more citations 
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than periphery countries, implying their higher impact and influence on scientific 

research (Schott, 1988b, 1998; Choi, 2012; Gomez et al., 2022). Notably, Gomez et 

al. (2022) draws on the existing classification of countries into core and periphery to 

reveal a growing disparity between the number of citations a country receives and 

the textual similarity of the publications they produce. 

Yet, it is often argued that the core-periphery model is entrenched in a Western-

centric perspective that prioritizes resources and personnel, and thus overlooks the 

diverse cultural influences and research priorities shaping global scientific 

recognition and influence (Schott, 1988b; Seth, 2009; Marginson, 2022b). As early 

as 1988, Schott (1988b) suggested that the coreperiphery structure is primarily 

attributed to the volume of a nations’ scientific output which obfuscates the 

importance of other key factors related to ties between countries, such as geopolitical 

relationships, linguistic similarities, colleagueship, scientific cooperation, and 

educational connections. Indeed, publication output remains heavily concentrated in 

the United States and a few European nations, implying that most quantitative 

indicators of scientific recognition—such as those based on raw publication, 

collaboration, and citation counts—tend to be notoriously Western-centric (May, 

1997; King, 2004; Gomez et al., 2022). These metrics often overlook contributions 

from regions with smaller output, failing to recognize the diverse intellectual 

contributions and local innovations that may not fit neatly within dominant Western 

frameworks (Anderson, 2018). These limitations highlight the need for more 

nuanced approaches that account for regional and contextual variations in scientific 

production and influence. 

Recent observations challenge the Western-centric narrative, indicating that 

emerging scientific nations are reshaping the global landscape of scientific 

recognition. Countries like China, Singapore, and South Korea are increasingly 

disrupting the traditional dominance of Western nations, signaling a shift in the 

concentration of global scientific influence (Lariviere et al., 2018; Basu et al., 2018; 

Leydesdorff et al., 2013; Gui et al., 2019; Choi, 2012). However, there is a growing 

tension between two perspectives: one that focuses on individual nations’ transitions 

from the periphery to the core, and another that critiques the vertical stratification 

and lower visibility of researchers from regions like Latin America, the Middle East, 

and East Asia. The latter perspective is best articulated by Marginson (Marginson, 

2022b) who discusses “the collapse of the centre-periphery model” which he 

attributes to internal collaboration and regional alliances rather than through 

traditional engagement with Euro-American scientific hubs (Marginson and Xu, 

2023). AdamsAdams (2012) further characterizes such regional collaboration as a 

form of mutual recognition among partners within the region, fostering the 

development of emerging research economies. 

Despite these qualitative insights, the tension remains unresolved due to a lack of 

robust quantitative evidence comparing the rise of individual countries within the 

existing core-periphery hierarchy with the creation of distinct regional scientific 

communities. Quantitative analyses are crucial for determining whether these 

regional networks are merely reinforcing the global hierarchy or truly reshaping it. 
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Without data-driven comparisons, it remains unclear whether the traditional core-

periphery model still applies or if a more nuanced framework is needed to capture 

the evolving dynamics of global scientific influence. 

Here, to map the structure underlying global scientific recognition and evaluate its 

implications for scientific influence, we analyzed the evolution of citation networks 

constructed from scientific publications and geolocated by their authors’ affiliations. 

Although citations are only one–among many–means to acknowledge scientific 

recognition, the accessibility and quantity of such data provide a useful perspective 

of how scientific influence accumulates. Specifically, our data is built from 

57,558,268 papers contained in the OpenAlex publication database from 1990 to 

2022, which can be attributed to the countries from which their authors are affiliated, 

in total capturing the output of 223 countries and independent states. We must 

acknowledge that the OpenAlex database has known limitations, including 

incomplete affiliation coverage (Zhang et al., 2024) and a primary focus on English-

language journals, which may introduce a selection bias towards Western countries 

(Gong et al., 2019). Despite these constraints, our results effectively identify 

significant patterns in scientific recognition. We then extracted 242 million citation 

relationships and calculated the number of country-specific citations to each paper 

within 5 years of publication (see SI, section S2). 

To quantitatively capture scientific recognition, we adopt a popular measure of rank 

overrepresentation or under-representation (Methods, and SI, section S3), which 

empowers us to measure when one nationality over- or under-cites the papers from 

another nationality, accompanied by a level of statistical significance. To our 

knowledge, this marks the first application of such a method to determine whether 

one nation exhibits a preference or aversion towards another’s scientific publications. 

The recognition relationship between countries in scientific output is influenced by 

a complex interplay of factors, including nationality bias, disparities in research 

quality, and international collaboration. Our study, through this measure, aims not to 

disentangle these individual factors but to elucidate the overall landscape resulting 

from their combined effects. We compare these citation patterns to a baseline 

constructed from the citation distribution of the source country to all other countries 

in the same year. This baseline is specifically tailored to each source country and 

year, representing the actual distribution of citations accumulated over a 5-year 

window from the source country to all global publications within that year. The 

resulting measure of citation preference between a source and target country can be 

interpreted as the probability that a randomly selected publication from the target 

country has more citations from the source country than a randomly selected 

publication from anywhere else in the world, and assumes a value between 0 (strong 

preference against) and 1 (strong preference for), where a value of 0.5 captures no 

preference. Since our method aggregates over a 5-year citation window, the most 

recent year for our analysis is 2017. 

There are many possible mechanisms that may contribute to strong citation 

preferences; our data lets us further control for two potential contributions. First, 

scientists are known to self-cite (Aksnes, 2003) at rates which vary based on culture, 
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discipline, and demographics (King et al., 2017; Azoulay and Lynn, 2020). Second, 

sharing an affiliation can increase the propensity to engage with a scientist’s work 

(Wuestman et al., 2019). To control for the possible influence of these two factors, 

we removed all citations between publications that share at least one author or at 

least one affiliation (SI, Section S2). This framework further accommodates 

controlling for specific factors which may influence national citation preferences, 

including scientific disciplines and journals, by modifying the citation baseline (see 

Methods). 

Data and Methods 

Bibliometric Data 

The dataset was drawn from the OpenAlex (Priem et al., 2022) bibliometric database 

in July 2022. OpenAlex is built upon the Microsoft Academic Graph (MAG), which 

Microsoft shuttered in December 2021, CrossRef, and ORCID. We used all indexed 

“journal-article” and “proceedings-article” records listed as published after 1990 and 

excluded any publication that did not list an institutional address. 

Publications are associated with countries using the institutional addresses listed by 

the authors. We assign a full unit credit of a publication to every country of affiliation 

on the paper’s author byline (“full counting”). For example, a paper listing ten 

authors– three with affiliations in Hungary, five with affiliations in the United States, 

and two in Canada— would count one paper to all three countries. See 

Supplementary Information for more details. 

National Co-variate Data 

We use data on national GDP, GDP per capita, and Population from the World Bank 

(Fantom and Serajuddin, 2016) to approximate the economic wealth and size of each 

country. The dataset covers 264 countries from 1960 to 2023. The official spoken 

language is provided for 195 countries and is encoded as a binary variable denoting 

common language for country pairs (Melitz and Toubal, 2014). We also source the 

bilateral distances (in kilometres) for most country pairs across the world from the 

GeoDist dataset provided by the Centre for Prospective Studies and International 

Information (CEPII) (Mayer and Zignago, 2011). This dataset also provides the 

continent each country belongs to, which we convert into a binary indicator denoting 

whether two countries belong to the same continent. In addition, Science and 

Technology Agreements (STA) are regarded as an important tool to achieve strategic 

Science Diplomacy (SD) objectives (Langenhove, 2017). We select records of STAs 

between countries (Nicolas Ruffin and¨ Schreiterer, 2017) to obtain the cumulative 

number of STAs between two countries over time. 

National citation preference 

We fix a year y and a source country (citing country) s and identify all publications 

with at least one affiliation in the source country over the next 5 years (y to y+5). We 

then find all publications worldwide published in year y that also received citations 
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from the source country’s 5-year publications. This process generates country-

specific citation frequencies (cs,5) over the fiveyear observation window, enabling us 

to establish a hierarchical ranking of ns,y publications that have garnered at least one 

citation from the source country (cs,5 >= 1). This forms the baseline sample, 

comprising a citation distribution p(c5|s,y) specific to the source country s and year 

y, with a sample size of ns,y. Next, we narrow our analytical focus to a designated 

target country t, identifying a subset of ns,t,y publications within our sample. These 

publications, represented by the distribution p(c5|s,t,y), must satisfy two criteria: they 

have received citations from the source country and maintain at least one institutional 

affiliation within the target country. 

The national citation preference, Ps,t,y, from the source country s to the target country 

t in year y is found using the Area Under the receiver-operator Curve (AUC) as a 

measure of the extent to which the target country’s publications are randomly 

distributed throughout the source country’s ranking. Specifically, the national 

preference is found as: 

 Ps,t,y  =  
1

ns,t,y ns,y 
  ∑

ns,t,y

i=1
∑

ns,y

j=1
𝕀 (c5

(i)  >  c5
(j)

)                                 (1)   

where 𝑐5
(𝑖)

  is the i-th sample from 𝑝(𝑐5|𝑠, 𝑡, 𝑦)  , 𝑐5
(𝑗)

  is the the j-th sample from 

𝑝(𝑐5|𝑠, 𝑦), and 𝕀 is the indicator function, which is 1 if 𝑐5
(𝑖)

> 𝑐5
(𝑗)

 and 0 otherwise. 

The AUC is a measure of the probability (between 0 and 1) that a randomly chosen 

publication from the cited country is ranked higher than a randomly chosen 

publication from any other country; a value of 1 reflects the cited country’s 

publications are over-expressed towards the top of the ranking, 0 occurs when the 

cited country’s publications are under-expressed towards the bottom of the ranking, 

and 0.5 denotes a random distribution throughout the ranking. 

We can further quantify the statistical significance of the over/under-representation 

of a specific country in the citation counts due to the equivalence of the AUC and 

Mann-Whitney U statistic (a.k.a. the Wilcox rank sum statistic). Specifically, we 

follow DeLong et al. to compare the observed AUC to 0.5 (DeLong et al., 1988) 

using the algorithm’s fast implementation (Sun and Xu, 2014). 

International citation preference network 

The international citation preference network is a temporal network, independently 

constructed for each year. To avoid multiple hypothesis testing, we used the Holm 

step-down method (Holm, 1979) using Bonferroni adjustments as implemented in 

Statsmodels with α = 0.01. The cumulative network aggregates over of all time slices 

and adopts the sign of the most recent slice in which the edge appeared. 

The community structure within the positive international citation preference 

network is found using the Degree Corrected Stochastic Block Model (DCSBM) as 

implemented in graphtool (Peixoto, 2017). Network centrality for the positive 

international citation preference network is found using the PageRank algorithm with 

a return probability of α = 0.85. 



1751 

Stratified bootstrap baseline 

To account for potential explanatory factors such as disciplinary focus and journal 

quality, we refine the assumptions underlying the random baseline in our national 

citation preference measure. We achieve this by implementing a stratified bootstrap 

approach, where we sample from the conditional citation distribution while ensuring 

that the sampled set exactly matches the observed publication counts for each journal 

in the observed citation distribution. Specifically, given the sample of ns,t,y 

publications affiliated with the target country t in year y and cited by the source 

country s, we track the frequency with which each journal appears, denoted js,t,y. We 

then sample with replacement from the source country’s baseline distribution p(c5|s,y) 

such that the journal counts remain consistent with the observed values. This 

adjustment controls for the influence of journal-specific factors and disciplinary 

differences. We then perform 100 samples of this bootstrap procedure and use the 

mean and standard deviation of the AUCs to identify statistically significant links.  

Scientific ideas 

To identify scientific ideas, we follow the methodology introduced in Cheng et al. 

2023 (Cheng et al., 2023). Specifically, we analyze the titles and abstracts for all of 

the publications in our OpenAlex corpus to identify the publications that mention at 

least one of 46,535 scientific ideas derived by Cheng et al. using the data-driven 

phrase segmentation algorithm, AutoPhrase (Shang et al., 2018). We then post-

process these ideas, removing cases that were first mentioned before 2000 and 

focusing only on those ideas that were mentioned by only one country in their first 

year of usage, resulting in 7,327 unique ideas mentioned in 202,932 publications. 

Finally, we derive a dyadic variable, for all pairs of countries in our network that 

mentioned at least one idea, denoting the fraction of ideas whose first usage was in 

the Origin country and then were later used in the Destination country. 

Logistic regression analysis 

We use a logistic regression model to investigate the potential relationship between 

the propensity for scientific ideas to spread between countries and their connectivity 

in the international citation preference network. The model is written as follows: 

log
𝑦𝑐

1−𝑦𝑐
= β0 + β1𝑋1,𝑐 + β2𝑋2,𝑐 + ⋯ + β𝑘𝑋𝑘,𝑐                               (2) 

Where 𝑐 denotes countries and 𝑦𝑐  is the dependent variable. For the first group of 

models, we use the fraction of ideas that originate in the origin country and are later 

mentioned by the destination country (see Methods and SI, section S2). The included 

control variables are the GDP and Population for both the Origin and Destination 

countries. The investigated independent variables are the total number of ideas 

mentioned by the Origin and Destination countries, the Topical Distance between the 

countries’ publications, the Physical Distance between the countries, a binary 

indicator of common official language, the one-hot encoding of a directed positive 

edge from the Destination to the Origin in the international citation preference 
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network, the onehot encoding of a directed negative edge from the Destination to the 

Origin in the international citation network, and the PageRank centrality of the 

Origin and Destination countries in the positive international citation preference 

network. We apply log-transformation with base 10 to GDP, Population, and Physical 

Distance. All features besides the binary features (Same Official Lang, Positive Edge, 

Negative Edge) are standarized by subtracting the mean and dividing by the standard 

deviation. 

Fixed-effect multinomial logistic regression 

We use the multinomial logit model to predict the trinary citation preference between 

countries (e.g. positive, negative, or no preference). The multinomial logit model 

assumes that the log odds of each category s ∈ {−1,1} relative to the reference 

category of no citation preference (s = 0) is a linear combination of the independent 

variables. Specifically, the model is defined as follows: 

log (
𝑃(𝑌𝑖𝑗𝑡=𝑠)

𝑃(𝑌𝑖𝑗𝑡=0)
) = β𝑠0 + β𝑠1𝑋𝑖𝑡 + β𝑠2𝑋𝑗𝑡 + β𝑠3𝑋𝑖𝑗𝑡 + α𝑡                 (3) 

where 𝑃(𝑌𝑖𝑗𝑡 = 𝑠) is the probability of the edge sign between source country 𝑖 and 

target country 𝑗  at time 𝑡  taking value 𝑠 ∈ {−1,1}  ; 𝑋𝑖𝑡   and 𝑋𝑖𝑡   capture potential 

country-specific characteristics in the country 𝑖 and 𝑗 at time 𝑡, respectively, while 

𝑋𝑖𝑗𝑡  represents potential pair-specific barriers or catalysts between country 𝑖 and 𝑗 at 

time 𝑡 ; α𝑡   are the time-specific effects (intercepts) that capture the heterogeneity 

across time periods. β𝑠0  is the intercept for category 𝑠 ; 𝛽𝑠1 , 𝛽𝑠2   and 𝛽𝑠3   are the 

coefficients associated with the independent variables 𝑋𝑖, 𝑋𝑗and 𝑋𝑖𝑗𝑡  for category 𝑠. 

We investigate different variants of the above model to study different combinations 

of countryspecific and country-pair-specific variables. The included control 

variables are the GDP per capita, population, and the fraction of top journal 

publications for both the Source and Target countries. The investigated pair-specific 

independent variables are physical distance, field distance, the same continent, the 

same official language, the cumulative number of bilateral science and technology 

agreements and scientific collaboration strength. We apply log-transformation with 

a base 10 to GDP per capita, population, physical distance, the cumulative number 

of bilateral science and technology agreements and scientific collaboration strength. 

All non-binary features are standardized by subtracting the mean and dividing by the 

standard deviation. 

Results 

International network of scientific recognition 

We first build the network of international scientific recognition (Fig. 1A). The 

international scientific recognition network is a temporal signed and directed 

network in which each country is a node, and a source country is linked to a target 

country by a positive (negative) edge if the source country over-cites (under-cites) 
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the target country’s publications. To begin, we consider the cumulative network in 

which we aggregate over time, taking any edge that appears at least one throughout 

the 27 years. We find that 147 countries had at least one statistically significant 

relationship to be included in the network. Of the 17,030 possible international 

relationships, only 541 are positive interactions and 1538 are negative interactions. 

The positive recognition network is shown in Fig. 1B. Scientific publications from 

Switzerland are over-cited the most, with 36 incoming edges, followed by Great 

Britain, Germany, and the Netherlands (Fig. 2B). On the other hand, publications 

from China are the most under-cited, with 86 incoming undercitation edges, followed 

by Japan, Iran and India (Fig. 2C). 

 

Figure 1. International network of scientific citation preferences. A) The full 

international network of scientific citation preferences. Edge color reflects positive 

(blue) or negative (red) citation preferences. B) The network filtered to positive 

relationships. The node size captures the country in-degree, while node colour reflects 

membership in one of five communities inferred using the degree-corrected stochastic 

block model. Node position is the same in both panels and was derived using only the 

positive relationships. 
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Figure 2. Properties of the international network of scientific citation preferences. (A) 

The odds ratios for a multinomial logit model with temporal fixed-effects to predict 

the positive (blue) or negative (red) citation preference compared to the baseline of no 

preference. Solid points are statistically significant at p < 0.05 with the 95% 

confidence intervals shown. The full regression table can be found in the SI, Table S3. 

The (B) positive and (C) negative in-degrees highlight 6 prominent countries, 

including the most positively viewed country in 2017, Switzerland (CH), and the most 

negatively viewed country, China (CN). (D) The normalized entropy for the 

distribution of PageRank centrality over the nodes has been increasing over the last 

30 years. (E) The probability for a negative citation preference between a country in a 

source community and a country in a target community. 

 

To identify key country-specific and country-pair-specific factors related to national 

citation preferences, we build a multinomial logit model with temporal fixed-effects 

to predict the citation preference between all pairs of countries from 1990 through 

2017. We find that, while most independent variables play a statistically significant 

role in the prediction, many of them do not differentiate in terms of the contribution 

direction between positive and negative citation preferences (Fig. 2A and SI, Table 

S1). In particular, collaboration strength, while indicative of a link between countries, 

does not help differentiate the sign of that preference, and topical similarity only 

contributes to the prediction of positive preferences. However, three cultural 

indicators: common language ( βpositive = 0.53, 95% CI = [0.41,0.65]; βnegative = −0.74, 

95% CI = [−0.84,−0.63]), same continent (βpositive = 0.42, 95% CI = [0.27,0.57]; 

βnegative = −0.69, 95% CI = [−0.78,−0.6]), and participation in Science and 

Technology Agreements 

(bilateral research agreement, βpositive = −0.17, 95% CI = [−0.19,−0.15]; βnegative = 

−0.01, 95% CI = [−0.02,0.0]), relate to both the presence and sign of the national 

citation preference (Fig. 2A). Finally, we use the fraction of publications in top 

journals to capture one aspect of research quality (see Methods and SI, Section S1) 
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and find that higher-quality publications in the target country are associated with a 

higher probability of a positive citation preference from the origin country, while 

lower-quality publications in the target country are associated with a negative 

citation preference (βpositive = 1.51, 95% CI = [1.39,1.63]; βnegative = −0.75, 95%CI 

=[−0.8,−0.69]). Overall, this model suggests a mutual-influence relationship 

between scientific quality, national culture, science diplomacy and international 

scientific recognition. 

Mapping the network of international preferences over time reveals the changing 

landscape of scientific diplomacy. Specifically, the network of international citation 

preferences has evolved away from a core-periphery structure dominated by a few 

hubs to a more distributed structure, a change which we measure by the increasing 

normalized entropy for the distribution of PageRank centrality scores (Fig. 2D). For 

example, before 2000, the network was dominated by the United States, with 

relatively little positive scientific recognition of countries in Asia or Africa (Fig. 2B). 

However, by 2010, Switzerland and Great Britain surpassed the United States in 

global recognition, and there were notable rises in recognition to Saudi Arabia, the 

Philippines, and Singapore (Fig. 2B). Throughout this period, China and Japan 

remained the most under-cited, dominating the negative citation preference network 

(Fig. 2C). 

Growing international scientific fragmentation 

The preference of some nations for the scientific work of others, combined with the 

proliferation of negative biases against groups of countries, is a characteristic 

hallmark of international scientific fragmentation (Aref et al., 2020). This pattern in 

citation patterns can stem from various factors, such as disciplinary biases, prevailing 

research trends, language barriers, geographical disparities, or ideological 

preferences. As a result, scientific fragmentation can distort the perception of 

research’s importance and impact, reinforce existing knowledge gaps, and impede 

the equitable dissemination and recognition of diverse scientific contributions. 

To measure the dynamics of international scientific fragmentation, we first detect the 

presence of international communities using the degree-corrected stochastic block 

model, finding strong evidence for a partition of the positive network in 5 distinct 

communities. Three blocks strongly resemble a three-layer core-periphery structure 

(Gallagher et al., 2021). Specifically, we find a dense core consisting of Western 

countries that tend to positively prefer each other’s work (1, dark blue) and a weaker 

core of many European countries (2, light blue), while countries in the periphery (5, 

orange) are agnostic to each other, but prefer countries from both the weak and strong 

cores (Fig. 1). 

At the same time, this analysis confirms that the core-periphery structure is an 

oversimplification of the diverse communities in global science. The international 

scientific recognition network reveals two additional communities outside of the 

Western scientific world: one community captures an international community 

predominately composed of Asian countries (3, red), including both East Asia and 

the Middle East, while another reflects the African nations (4, yellow). 
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The fragmentation of global science is evidenced by the distribution pattern of 

positive and negative citation preferences across scientific communities. Overall, 

only 34% of positive citation preferences occur between nations from different 

communities, whereas negative citation preferences predominantly cross community 

boundaries, with over 86% occurring between nations from different communities. 

The structure of the international citation preference network and its communities 

provides a more nuanced view of the differing roles nations play in shaping global 

scientific recognition and knowledge dissemination. For example, while both 

Singapore and China have gained recognition for their scientific contributions (Zhou 

and Leydesdorff, 2006), our analysis shows that Singapore occupies a unique 

bridging role between different communities, whereas China, despite its prominence, 

remains within the Asian community without holding a central core position. Notably, 

our work highlights Saudi Arabia, Turkey, and Iran as occupying more central roles 

within the Asian scientific community. Similarly, South Africa (ZA) stands out as a 

central node within the African scientific community, while the network reveals the 

distinct roles of Uganda and Nigeria as key bridges—Uganda connecting to Western 

communities and Nigeria to the Asian community. 

To assess the dynamics of international scientific fragmentation, we look at the 

probability of forming negative or positive links. Overall, we observe a growing 

tendency for nations to negatively judge the work of other nations as evidenced by 

the increase in negative connection probabilities (SI, Figure S1). However, the 

community structure of the international scientific recognition network reveals that 

these preferences are not evenly distributed and are not primarily directed at specific 

nations. Instead, the fragmentation of global science appears to be influenced by the 

detected geopolitical communities. As shown in Fig. 2E, the probability of inter-

community negative preference links has grown significantly since 1990. The 

probability of negative inter-community links is largest between the Western and 

Asian communities, specifically communities 1−> 3 and 3− > 1 as well as 2−> 3 

and 3−> 2, but has also significantly grown between the African and Western 

communities 1− > 4, 4− > 1 and the African and Asian communities 3− > 4, 4− > 3. 

Significantly, there are nearly symmetric negative inter-community link probabilities, 

indicating the true fragmentation of the global scientific landscape into distinct 

communities cannot be explained by a core-periphery model. 

International recognition network and the diffusion of ideas 

To explore the potential connection between the position of nations in the 

international scientific recognition network and the propensity for them to spread 

ideas, we investigate the flow of knowledge between countries. We operationalize 

scientific knowledge through the appearance of keywords in the title and abstract of 

scientific publications (Milojevic et al.´ , 2011; Milojevic´, 2015; Cheng et al., 2023). 

Specifically, we identify the mention of over 40,000 n-grams defined as scientific 

ideas by a previous study (Cheng et al., 2023) and limit to 7,327 unique ideas 

originating in only one country after 2000 (see Methods and SI, Section S2). We then 

model the fraction of ideas originating in one country that are eventually mentioned 
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in another target country at least once during the subsequent 22 years (2000-2022) 

using logistic regression. This approach allows us to gauge the spread of information 

through the global scientific ecosystem, reflecting the broader exchange of ideas 

without needing to follow each idea’s continuous trajectory over time. Consequently, 

we use the cumulative international recognition network where we aggregate into a 

static snapshot using all links that appear in at least one time slice. 

Since there are many factors which may influence the flow of knowledge between 

countries, in Model 1, we predict the fraction of ideas which spread between 9,635 

country pairs based on the number of ideas which originate and terminate in the 

origin and target countries respectively, the countries’ populations and GDP per 

capita. Unsurprisingly, the model coefficients in Table 1 show that the number of 

ideas originating in a country, the ability of a target country to take up ideas, and the 

country’s population are all statistically significant. We also find that the topical 

distance between the countries’ scientific publications and whether the origin and 

destination share a common language are also statistically significant in their relation 

to the spread of ideas. 

 
Table 1. International diffusion of scientific ideas. Model coefficients for a series of 

logistic regression models to predict the fraction of scientific ideas that originate in 

one country that are eventually mentioned in the destination country. Confidence 

intervals in parentheses. Standard errors and p-values are reported. 

 Dependent variable: Fraction of scientific ideas.  

 
Model  

(1) (2) (3) (4) 

Intercept −1.08∗∗∗ −1.1∗∗∗ −1.08∗∗∗ −1.08∗∗∗ 

 (−1.13,−1.02) (−1.16,−1.04) (−1.15, −1.02) (−1.15, −1.01) 

 
S.E. 0.03; p-v 

0.0 
S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 

Log Population origin −0.38∗∗∗  −0.45∗∗∗ −0.44∗∗∗ −0.46∗∗∗ 

 (−0.44,−0.33) (−0.51,−0.38) (−0.51,−0.37) (−0.53,−0.39) 

 
S.E. 0.03; p-v 

0.0 
S.E. 0.03; p-v 0.0 S.E. 0.04; p-v 0.0 S.E. 0.04; p-v 0.0 

Log Population destination 0.17∗∗ 0.18∗∗ 0.17∗∗ 0.18∗∗ 

 (0.06,0.28) (0.06,0.3) (0.06,0.29) (0.06,0.3) 

 
S.E. 0.06; p-v 

0.0019 
S.E. 0.06; p-v 0.0036 S.E. 0.06; p-v 0.0042 

S.E. 0.06; p-v 

0.0034 

Log GDP per capita origin −0.14∗∗∗ −0.21∗∗∗ −0.21∗∗∗ −0.25∗∗∗ 

 (−0.2,−0.09) (−0.27,−0.15) (−0.28,−0.15) (−0.32,−0.18) 

 
S.E. 0.03; p-v 

0.0 
S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.04; p-v 0.0 

Log GDP per capita destination 0.07 0.07 0.07 0.07 

 (−0.05,0.19) (−0.06,0.2) (−0.06,0.2) (−0.06,0.2) 

 
S.E. 0.06; p-v 

0.2372 
S.E. 0.06; p-v 0.2687 S.E. 0.07; p-v 0.2719 

S.E. 0.07; p-v 

0.2703 

Number of ideas origin 0.16∗∗∗ 0.19∗∗∗ 0.19∗∗∗ 0.18∗∗∗ 

 (0.1,0.21) (0.13,0.25) (0.12,0.25) (0.11,0.24) 

 
S.E. 0.03; p-v 

0.0 
S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 

Number of ideas destination 0.81∗∗∗ 0.82∗∗∗ 0.83∗∗∗ 0.83∗∗∗ 

 (0.69,0.94) (0.68,0.96) (0.69,0.97) (0.68,0.97) 

 
S.E. 0.06; p-v 

0.0 
S.E. 0.07; p-v 0.0 S.E. 0.07; p-v 0.0 S.E. 0.08; p-v 0.0 
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Topic distance  −0.1∗∗ −0.09∗∗ −0.09∗∗ 

  (−0.17,−0.03) (−0.16,−0.03) (−0.16,−0.02) 

  S.E. 0.03; p-v 0.0046 S.E. 0.03; p-v 0.007 
S.E. 0.03; p-v 

0.0084 

Log Physical distance  −0.01 0.01 0.01 

  (−0.07,0.05) (−0.05,0.07) (−0.05,0.07) 

  S.E. 0.03; p-v 0.6742 S.E. 0.03; p-v 0.6855 S.E. 0.03; p-v 0.811 

Common language  0.39∗∗∗ 0.34∗∗∗ 0.32∗∗∗ 

  (0.21,0.57) (0.15,0.53) (0.13,0.51) 

  S.E. 0.09; p-v 0.0 S.E. 0.1; p-v 0.0004 S.E. 0.1; p-v 0.0008 

Positive citation preference   0.4∗∗ 0.32∗ 

   (0.16,0.64) (0.07,0.57) 

   S.E. 0.12; p-v 0.001 
S.E. 0.13; p-v 

0.0111 

Negative citation preference   −0.23∗ −0.22∗ 

   (−0.41,−0.05) (−0.4,−0.04) 

   S.E. 0.09; p-v 0.0114 
S.E. 0.09; p-v 

0.0153 

Network centrality origin    

0.08∗ 

(0.01,0.16) 

S.E. 0.04; p-v 

0.0218 

Network centrality destination    

0.01 

(−0.05,0.08) 

S.E. 0.03; p-v 

0.6583 

Note:  ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001   

Observations 
963

5 
8292 8292 8292 

Pseudo-R2 
0.1

652 
0.1876 0.1924 0.1932 

Log Likelihood -4242.81 -3606.07 -3584.55 -3581.06 

F statistic 243.97∗∗∗ (d.f.=6.0) 148.93∗∗∗ (d.f.=9.0) 123.34∗∗∗ (d.f.=11.0) 104.5∗∗∗ (d.f.=13.0) 

 

The network of scientific recognition enhances our ability to predict the flow of ideas 

between countries, as shown in Models 3 and 4 (Table 1). The odds ratios suggest 

that a positive recognition edge between the target and originating countries leads to 

a 1.5 times increase in the fraction of ideas which spread between those countries 

compared to the baseline of no edge, while a negative recognition edge between the 

target and originating countries leads to 0.8x decrease in the fraction of ideas which 

spread between those countries. Beyond the immediate neighborhood, the global 

network topology is hypothesized to play a significant role in the spread of 

information over social networks (Kempe et al., 2005; Pei et al., 2018). We also find 

that the network centrality of the originating country is related to the diffusion of 

ideas (p-value < 0.0218; 95% IC = [0.01,0.16]) (see Table 1 for details). 

Exploring the impact of journals on citation preferences 

We now extend our analysis by introducing additional controls to further explore 

factors influencing citation preferences. Our framework seamlessly integrates a non-

parametric approach that accounts for the field or journal in which each article is 

published, allowing us to control for variability in citation practices across 

disciplines and venues. By incorporating these controls and juxtaposing the new 

network against our original, this enhanced model provides a more refined 
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understanding of how disciplinary and journal-specific effects interact with national-

level citation behaviors, offering deeper insights into the structure of global scientific 

recognition. 

 

A B 

 

Figure 3. The international network of scientific citation preferences controlling for 

publication journal. (A) The odds ratios for a multinomial logit model to predict the 

positive (blue) or negative (red) citation preference compared to the baseline of no 

preference. Solid points are statistically significant at p < 0.05 with the 95% 

confidence intervals shown. The full regression table can be found in the SI, Table S4. 

(B) The journal bootstrap network filtered to positive relationships using the same 

layout as in Fig 1. 

 

Instead of relying on the full citation distribution for all publications cited by the 

source country, we construct a new baseline citation distribution using a stratified 

bootstrap approach that accounts for journal frequency (see Methods for details). 

This technique samples from the source country’s conditional citation distribution 

while ensuring the sampled set reflects the observed publication counts for each 

journal. By controlling for journal-level citation patterns– commonly used as proxies 

for scientific discipline and “quality”–this method provides a more detailed 

benchmark, isolating national citation preferences from journal-related con-founders. 

Shown in Fig. 3B, the resulting cumulative international network of citation 

preferences based on the journal bootstrap (N2) exhibits both notable similarities and 

differences when compared to the original network (N1). Specifically, N2 reveals 

more positive national preferences, with a total of 645 compared to 541 in N1, while 

it shows significantly fewer negative preferences, dropping from 1,538 in N1 to just 

334 in N2. At the same time, there is considerable overlap between the networks: 

448 positive preferences are present in both networks, accounting for 84% of the 

smaller N2, and 326 negative preferences are shared, representing 98% of the smaller 

N1. The variation in positive edges is largely concentrated in a small number of 

countries: 47% of the new edges are directed toward just 11 countries, while 30% 

originate from only 7 countries. Moreover, the edge distribution in N2 largely mirrors 
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the community structure observed in N1 such that 60% of positive edges connect 

nations within the same community in N2, slightly down from 66% in N1, and 85% 

of negative edges link nations from different communities in N2, compared to 86% 

in N1. Using a similar multinomial logistic regression model with temperal fixed-

effects to predict the presence and sign of national preferences, we find the same 

independent variables play remarkably similar patterns of importance for predicting 

the odds of a positive or negative edge, and differentiating between those signs (Fig. 

3A). 

Taken together, these observations suggest that about 80% of the negative citation 

preferences we initially identified can be attributed to disciplinary differences in 

scientific focus and journal “quality”. At the same time, the increase in positive 

preferences primarily within the original communities, indicates the importance of 

those communities, suggesting they are highly influential in shaping collaborative 

networks and recognition. Ultimately, these findings emphasize the value of applying 

robust methodological frameworks to uncover the complexities of international 

citation preferences, providing deeper insights into the factors that influence 

scientific recognition on a global scale. 

Discussion 

The international scientific landscape, a complex and dynamic web of knowledge, 

people and practices, is molded by national interests grounded in historical events, 

cultural values, political agendas, economics, and technological innovations. These 

same forces shape interactions between nations through incentives for international 

collaboration, researcher mobility, and knowledge flows. By analyzing more than 

fifty-seven million scientific publications across 223 countries spanning the period 

1990-2022, we provide a large-scale temporal and structural analysis of the 

collective structure of global scientific recognition. We find that the international 

citation preference network constructed from these publications is shaped by cultural 

elements, including language and political agreements, and augments insights from 

the study of scientific collaboration and scientific topics. Additionally, we quantify 

the network’s departure from a core-periphery structure and identify five 

communities corresponding to major global regions, revealing a growing trend 

towards increased fragmentation. We then demonstrate that the international citation 

preference network imposes limitations on the dissemination of scientific ideas, 

reflecting a more efficient spread of concepts within a community compared to their 

transmission between distinct communities. Finally, we find that around 80% of 

negative citation preferences can be explained by disciplinary differences and journal 

“quality”, while those same factors increase the prevalence of positive preferences 

within the original communities. 

Our results reveal the collective structure of international citation preferences, 

complementing the viewpoints offered by collaboration, migration, and citation 

volume (Glanzel¨, 2001; Leydesdorff and Wagner, 2008; Wagner and Jonkers, 2017). 

While we were able to quantify the magnitude and significance of these preferences, 

and mapped how these preferences changed when controlling for scientific journals, 
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but our data is unable to suggest all of causal mechanisms driving them. Additional 

work is needed to differentiate whether the observed patterns are rooted in social 

factors like cultural differences or accessibility. Nevertheless, the resulting model of 

global recognition reveals interesting features of the international state of scientific 

discourse. 

Our quantitative results reveal the emergence of multiple distinct international 

communities, challenging the traditional core-periphery model of global science. 

These findings show that rather than a simple transition of countries from the 

periphery to the core, regional scientific communities are increasingly disconnected 

from each other. Notably, we identified negative citation links between these 

communities–evidence of declining mutual recognition–which would not be 

captured by a standard citation or collaboration network model. This suggests that 

these communities are growing apart, reinforcing their preference for internal 

knowledge sharing over external engagement. The implications of this are profound 

for the sociology of science and global science inequalities: instead of a unified 

global hierarchy, we may be witnessing the fragmentation of scientific influence, 

where certain regions strengthen internal ties at the cost of broader visibility and 

integration into the global scientific landscape. This deepens existing disparities, as 

regions that were once peripheral may develop more insular networks, further 

complicating efforts to address global inequalities in scientific recognition and 

collaboration. 

The results of our study on the international scientific landscape carry several policy 

implications. Firstly, acknowledging the influence of national interests, historical 

events, cultural values, political agendas, economics, and technological innovations 

on global scientific recognition through citation suggests that the assessment of 

scientific impact to publications, authors, and organizations should also be sensitive 

to these multifaceted factors. It further suggests research into the implications of 

national vs international citation recognition on individual careers and potential 

inequalities in recognition that may arise (Huang et al., 2020). Secondly, the 

departure from a traditional core-periphery structure via the identification of five 

major global communities, underscores a growing trend towards increased 

fragmentation in scientific influence. Policymakers will need to adapt strategies to 

address this shift, ensuring inclusivity and collaboration across diverse scientific 

communities. Finally, the negative influences on national preferences of bilateral 

agreements for science and technology mirror results found for other types of treaties 

(Hoffman et al., 2022). This finding underscores that such agreements, which are 

intended to foster collaboration and knowledge exchange between nations, may 

encounter challenges that impede their effectiveness. Thus, they hamper an 

important tool that policymakers have to establish and nurture international scientific 

relationships, potentially hindering the full realization of the intended benefits of 

bilateral agreements in advancing global scientific cooperation. 
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Code and Data Availability 

The primary dataset, OpenAlex, is freely available online at https://openalex.org/. 

All code used to conduct the analysis and generate the figures, as well as the 

processed data and network structure, is included as part of the pySciSci Python 

package (Gates and Barabasi´, 2023): 

https://github.com/SciSciCollective/pyscisci/globalscience. 
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Supplemental Information 

S1 Top Journals 

Assessing the quality of a publication by its venue, often the journal in which it is 

published is a common practice in academic research (Saha et al., 2003; McKiernan 

et al., 2019). This approach is based on the premise that the reputation and rigour of 

the peer-review process of a journal are indicative of the quality of the articles it 

publishes. Top journals are traditionally identified by their impact factor, the average 

number of citations to publications in that journal over a 2-year window, which is 

susceptible to temporal and disciplinary variations (Garfield, 2006; Althouse et al., 

2009). To control for these, we focus on all publications in each journal and field 

(OpenAlex Level 1) and find the number of citations to the publication over 5 years 

(c5). We then leverage that the journal-specific citation distributions are log-normal 

(Stringer et al., 2008), and rank each journal in each field and each year by the mean 

log number of citations over 5 years. Finally, we take the top 50 journals in each field 

and each year, giving the set of top journals. 

Using the yearly top journal set, we identify the fraction of publications from each 

country in the top journals, and normalize by the overall fraction of the global 

publications in these top journals (this quantity was decreasing over the time period 

considered). 

S2 Identifying Scientific Ideas 

To identify scientific ideas, we follow the methodology introduced in Cheng et al. 

(2023) (Cheng et al., 2023). We begin by pre-processing OpenAlex texts in several 

ways. First, we generate our input corpus by combining the abstract and title of each 

OpenAlex article. Then we remove the last sentence of an abstract if it contains 

copyright information. Next, we lowercase the text, remove digits, and replace 

punctuation except commas and periods with spaces. Finally, we use Porter 

lemmatization on the corpus for all words longer than five characters to collapse 

different variations of the same word (e.g., singular versus plural forms). 

We then identify all publications that mention at least one of the ideas from the 

master list of 46,535 scientific ideas derived by Cheng et al. using a data-driven 

phrase segmentation algorithm, AutoPhrase (Shang et al., 2018). This results in a 

corpus of 1,191,364 publications from 221 countries. Next, we post-process these 

ideas, removing cases that were first mentioned before 2000 and focusing only on 

those ideas that were mentioned by only one country in their first year of usage, 

resulting in 7,327 unique ideas mentioned in 202,932 publications. Finally, we derive 

a dyadic variable denoting the fraction of ideas whose first usage was in the Origin 

country and then were later used in the Destination Country sometime between 2000 

and 2022. 
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S3 International citation preference network 

 

Table S1. Fixed-effect multinomial logit regression for 1990-2017. Model coefficients 

labelled by p-value. Standard errors in parentheses. 

 

Dependent variable: Citation preference 

   Model   

(1) (2) (3) (4) (5) (6) 

Citation Preference : Positive 

Intercept 
−15.92∗∗∗ −16.64∗∗∗ −17.22∗∗∗ −17.4∗∗∗ −13.55∗∗∗ −15.57∗∗∗ 

 (−16.61,−15.23) (−17.34,−15.93) (−17.99,−16.44) (−18.18,−16.62) (−14.34,−12.76) (−16.4,−14.73) 

 S.E. 0.35; p-v 0.0 S.E. 0.36; p-v 0.0 S.E. 0.4; p-v 0.0 S.E. 0.4; p-v 0.0 S.E. 0.4; p-v 0.0 S.E. 0.43; p-v 0.0 

Log origin GDP per capita 2.27∗∗∗ 2.05∗∗∗ 1.68∗∗∗ 1.71∗∗∗ −0.56∗∗∗ −0.34∗∗∗ 

 (2.2,2.33) (1.98,2.12) (1.61,1.75) (1.64,1.78) (−0.67,−0.45) (−0.46,−0.22) 

 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.04; p-v 0.0 S.E. 0.04; p-v 0.0 S.E. 0.06; p-v 0.0 S.E. 0.06; p-v 0.0 

Log target GDP per capita 2.07∗∗∗ 1.89∗∗∗ 1.46∗∗∗ 1.5∗∗∗ −0.79∗∗∗ −1.42∗∗∗ 

 (2.01,2.13) (1.82,1.95) (1.39,1.53) (1.43,1.57) (−0.9,−0.69) (−1.53,−1.31) 

 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.04; p-v 0.0 S.E. 0.04; p-v 0.0 S.E. 0.05; p-v 0.0 S.E. 0.06; p-v 0.0 

Log origin population 2.17∗∗∗ 2.36∗∗∗ 2.19∗∗∗ 2.26∗∗∗ 0.14∗ 0.27∗∗∗ 

 (2.11,2.23) (2.29,2.42) (2.12,2.26) (2.19,2.33) (0.03,0.24) (0.16,0.38) 

 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.04; p-v 0.0 S.E. 0.05; p-v 

0.0105 

S.E. 0.06; p-v 0.0 

Log target population 1.97∗∗∗ 2.14∗∗∗ 1.91∗∗∗ 1.97∗∗∗ −0.22∗∗∗ −0.06 

 (1.91,2.02) (2.08,2.2) (1.84,1.97) (1.9,2.04) (−0.32,−0.11) (−0.17,0.05) 

 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.05; p-v 

0.0001 

S.E. 0.06; p-v 

0.3037 

Physical distance  −0.79∗∗∗ −0.56∗∗∗ −0.55∗∗∗ −0.03 −0.03 

  (−0.84,−0.75) (−0.6,−0.51) (−0.6,−0.51) (−0.08,0.03) (−0.09,0.02) 

  S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.03; p-v 

0.3344 

S.E. 0.03; p-v 

0.2762 

Same continent  0.07 0.11 0.14∗ 0.32∗∗∗ 0.42∗∗∗ 

  (−0.04,0.18) (−0.01,0.23) (0.02,0.26) (0.18,0.46) (0.27,0.57) 

  S.E. 0.06; p-v 

0.2189 

S.E. 0.06; p-v 

0.0769 

S.E. 0.06; p-v 

0.0264 

S.E. 0.07; p-v 0.0 S.E. 0.08; p-v 0.0 

Same official language  1.25∗∗∗ 1.2∗∗∗ 0.61∗∗∗ 0.53∗∗∗ 

  (1.14,1.35) (1.1,1.31) (0.49,0.72) (0.41,0.65) 

  S.E. 0.05; p-v 0.0 S.E. 0.05; p-v 0.0 S.E. 0.06; p-v 0.0 S.E. 0.06; p-v 0.0 

Field similarity  3.19∗∗∗ 3.21∗∗∗ 1.63∗∗∗ 2.14∗∗∗ 

  (2.99,3.39) (3.01,3.41) (1.43,1.82) (1.93,2.35) 

  S.E. 0.1; p-v 0.0 S.E. 0.1; p-v 0.0 S.E. 0.1; p-v 0.0 S.E. 0.11; p-v 0.0 

Bilateral research agreements   −0.1∗∗∗ −0.18∗∗∗ −0.17∗∗∗ 

   (−0.12,−0.08) (−0.2,−0.16) (−0.19,−0.15) 

   S.E. 0.01; p-v 0.0 S.E. 0.01; p-v 0.0 S.E. 0.01; p-v 0.0 

Log collaboration strength    2.73∗∗∗ 2.57∗∗∗ 

    (2.62,2.85) (2.45,2.69) 

    S.E. 0.06; p-v 0.0 S.E. 0.06; p-v 0.0 

Origin top journal fraction     −0.29∗∗∗ 

(−0.4,−0.18) 

S.E. 0.06; p-v 0.0 

Target top journal fraction     1.51∗∗∗ 

(1.39,1.63) 

S.E. 0.06; p-v 0.0 

Citation Preference : Negative 

Intercept −14.79∗∗∗ −14.49∗∗∗ −11.41∗∗∗ −11.38∗∗∗ −10.5∗∗∗ −10.63∗∗∗ 

 (−15.09,−14.5) (−14.79,−14.2) (−11.72,−11.11) (−11.69,−11.07) (−10.81,−10.18) (−10.96,−10.3) 

 S.E. 0.15; p-v 0.0 S.E. 0.15; p-v 0.0 S.E. 0.16; p-v 0.0 S.E. 0.16; p-v 0.0 S.E. 0.16; p-v 0.0 S.E. 0.17; p-v 0.0 

Log origin GDP per capita 2.64∗∗∗ 2.56∗∗∗ 2.48∗∗∗ 2.48∗∗∗ 2.1∗∗∗ 1.43∗∗∗ 

 (2.6,2.69) (2.52,2.61) (2.43,2.53) (2.43,2.53) (2.04,2.16) (1.37,1.5) 

 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 

Log target GDP per capita 1.14∗∗∗ 1.13∗∗∗ 0.95∗∗∗ 0.94∗∗∗ 0.57∗∗∗ 0.89∗∗∗ 

 (1.11,1.17) (1.1,1.16) (0.92,0.99) (0.91,0.98) (0.52,0.63) (0.84,0.95) 

 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 
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Log origin population 2.66∗∗∗ 2.6∗∗∗ 2.53∗∗∗ 2.51∗∗∗ 2.13∗∗∗ 2.17∗∗∗ 

 (2.62,2.7) (2.56,2.64) (2.48,2.57) (2.47,2.55) (2.08,2.19) (2.11,2.23) 

 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 

Log target population 2.44∗∗∗ 2.41∗∗∗ 2.25∗∗∗ 2.23∗∗∗ 1.86∗∗∗ 1.79∗∗∗ 

 (2.4,2.48) (2.37,2.45) (2.21,2.29) (2.19,2.28) (1.8,1.91) (1.73,1.85) 

 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 

Physical distance  −0.19∗∗∗ −0.07∗∗∗ −0.07∗∗∗ 0.03 0.08∗∗∗ 

  (−0.22,−0.15) (−0.11,−0.04) (−0.11,−0.04) (−0.01,0.06) (0.05,0.12) 

  S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 

0.1488 

S.E. 0.02; p-v 0.0 

Same continent  −0.72∗∗∗ −0.71∗∗∗ −0.7∗∗∗ −0.7∗∗∗ −0.69∗∗∗ 

  (−0.8,−0.64) (−0.79,−0.63) (−0.79,−0.62) (−0.78,−0.61) (−0.78,−0.6) 

  S.E. 0.04; p-v 0.0 S.E. 0.04; p-v 0.0 S.E. 0.04; p-v 0.0 S.E. 0.04; p-v 0.0 S.E. 0.04; p-v 0.0 

Same official language   −0.63∗∗∗ −0.61∗∗∗ −0.75∗∗∗ −0.74∗∗∗ 

   (−0.73,−0.53) (−0.71,−0.51) (−0.85,−0.65) (−0.84,−0.63) 

   S.E. 0.05; p-v 0.0 S.E. 0.05; p-v 0.0 S.E. 0.05; p-v 0.0 S.E. 0.05; p-v 0.0 

Field similarity   0.73∗∗∗ 0.73∗∗∗ 0.53∗∗∗ 0.62∗∗∗ 

   (0.67,0.79) (0.67,0.79) (0.47,0.6) (0.56,0.69) 

   S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 S.E. 0.03; p-v 0.0 

Bilateral research agreements    0.01∗ −0.01 −0.01 

    (0.0,0.02) (−0.02,0.0) (−0.02,0.0) 

    S.E. 0.01; p-v 

0.0488 

S.E. 0.01; p-v 

0.0708 

S.E. 0.01; p-v 

0.1369 

Log collaboration strength     0.4∗∗∗ 0.48∗∗∗ 

     (0.37,0.44) (0.44,0.52) 

     S.E. 0.02; p-v 0.0 S.E. 0.02; p-v 0.0 

Origin top journal fraction      0.88∗∗∗ 

(0.82,0.94) 

S.E. 0.03; p-v 0.0 

Target top journal fraction      −0.75∗∗∗ 

(−0.8,−0.69) 

S.E. 0.03; p-v 0.0 

Note:  ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 

0.001 

    

Observations 930798 844882 744760 744760 744760 744760 

Pseudo R2 0.5613 0.5793 0.5954 0.5963 0.6198 0.6386 

Log Likelihood -32842.41 -30453.84 -28640.06 -28580.11 -26918.1 -25582.81 

LLR χ2 84024.71∗∗∗ 

(d.f.=62.0) 

83875.63∗∗∗ 

(d.f.=66.0) 

84307.51∗∗∗ 

(d.f.=70.0) 

84427.42∗∗∗ 

(d.f.=72.0) 

87751.43∗∗∗ 

(d.f.=74.0) 

90422.0∗∗∗ 

(d.f.=78.0) 

Year FE Yes Yes Yes Yes Yes Yes 
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Figure S1. International network fragmentation. The probability of a positive (blue) 

or negative (red) directed edge from a country in the source community (rows) to a 

country in the target community (columns) from 1990 until 2017 (x-axis). 
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