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Abstract 

Disruptive innovation plays a critical role in driving technological progress and reshaping industries 

by challenging established paradigms and fostering new opportunities for growth. While previous 

research has largely focused on the static relationship between knowledge characteristics and 

disruptive innovation, the temporal evolution of knowledge source diversity, breadth, and depth and 

their influence on disruptive innovation remain unclear. This study explores these dynamics by 
analysing multivariate time-series data from global patents spanning 1980 to 2010. The 

Autoregressive Distributed Lag (ARDL) model is employed to assess both the short-run and long-run 

effects of knowledge structures on disruptive innovation. The results reveal that, in the long run, 

knowledge source diversity positively influences disruptive innovation, whereas knowledge breadth 

has a negative effect, and knowledge depth shows no significant impact. In the short run, knowledge 

depth positively contributes to innovation, while knowledge source diversity exerts a negative effect, 

and knowledge breadth remains insignificant. These findings underscore the importance of aligning 

knowledge management strategies with temporal dynamics to foster sustained innovation. 

Introduction 

Disruptive innovation, which reshapes existing technological paradigms and drives 

progress in entirely new directions, has historically been a cornerstone of 

transformative development. However, recent studies reveal a worrying trend: the 

disruptive potential of innovations is steadily declining. Park et al. (2023) quantified 

this phenomenon using the CD index, a metric that captures the disruptiveness of 

patents and scientific publications by assessing their impact on subsequent citation 

patterns. Their findings highlighted a consistent decline in disruptiveness across 

technological fields, raising critical questions about the factors driving this shift. 

Despite growing attention to this phenomenon, it remains unclear whether and how 

different dimensions of knowledge influence this decline.  

Existing studies have investigated various factors influencing innovation, including 

institutional frameworks such as intellectual property rights regime (Thakur-Wernzet 

al., 2022) and funding mechanisms (Irfan et al., 2022), technological ecosystems 

such as industry clusters (Kim et al., 2023) and R&D networks (Wen et al., 2021), 

and organizational characteristics such as team size (Wuchty et al., 2007), leadership 

styles (Alblooshi et al., 2021), and knowledge management practices (Darroch, 2005; 

Mardani et al., 2018). Among these factors, knowledge emerges as a cornerstone of 
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the innovation process, enabling both exploration and exploitation, which form the 

basis for novel recombination and technical refinement (Grant, 1996). Evolutionary 

economics reinforces this perspective by emphasizing the cumulative nature of 

knowledge, where its recombination drives breakthroughs (Nelson, 1985). Despite 

these insights, most research adopts a static perspective, overlooking how the 

continuous evolution of knowledge influences disruptive innovation. Innovation is 

inherently dynamic, shaped by the transformation of knowledge and its interplay with 

external factors like technological advancements and market dynamics. As 

innovation systems mature, the complexity of integrating and applying knowledge 

evolves, potentially reshaping its impact on innovation outcomes. This highlights the 

need to examine how the dynamic restructuring of knowledge affects the trajectory 

of disruptive innovation. 

Innovation does not occur in isolation; it is inherently shaped by the knowledge that 

drives it (Kaplan et al., 2015). From the perspective of the knowledge-based view, 

the evolution of disruptive innovation is fundamentally shaped by two critical 

dimensions of knowledge: what knowledge is combined, referring to Knowledge 

Source Diversity (KSD), and how knowledge is applied, referring to Knowledge 

Breadth (KB) and Depth (KD) (Grant, 1996). what knowledge is combined pertains 

to the sources of knowledge that contribute to an innovation, capturing the diversity 

of external knowledge inputs that provide the raw material for technological 

advancement. In contrast, how knowledge is applied focuses on the internal 

structuring and utilization of knowledge within the innovation process, reflecting the 

breadth and depth with which knowledge is synthesized and leveraged to achieve 

disruptive breakthroughs. Specifically, KSD refers to the variety of origins from 

which knowledge is drawn, including different technological domains, industries, 

and institutional sources. A high degree of KSD fosters novel recombination and 

cross-boundary integration, introducing fresh perspectives that challenge established 

paradigms (Rodriguez et al., 2017). However, the complexity of assimilating and 

coordinating diverse external knowledge inputs can impose integration challenges, 

potentially delaying the realization of innovation benefits. KB and KD, representing 

the how dimension, determine how acquired knowledge is internally structured and 

applied within an innovation. KB reflects the degree of interdisciplinarity within a 

single innovation effort. Greater KB facilitates the integration of diverse ideas, 

fostering interdisciplinary breakthroughs; however, it can also introduce internal 

coordination complexities that may hinder short-run efficiency. In contrast, KD 

signifies the extent of specialization within a particular domain, enabling focused 

technical advancements that build upon existing expertise. While deep specialization 

supports incremental innovation and enhances technical proficiency, it may limit 

adaptability and reduce the potential for radical disruption over time. 

To better understand the dynamic relationship between disruptive innovation (DI) 

and the three critical dimensions of knowledge—source diversity, breadth, and 

depth—this study employs the Autoregressive Distributed Lag (ARDL) model 

(Pesaran, et al., 2001). In contrast to traditional static models, the ARDL approach 

enables the simultaneous estimation of short-run adjustments and long-run 

equilibrium relationships, providing deeper insights into the evolving impact of 

knowledge on DI. By distinguishing between short-run fluctuations and long-run 
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trends, the ARDL model offers valuable insights into how DI responds to changes in 

knowledge dimensions over different time horizons. The short-run analysis reveals 

immediate responses to shifts in knowledge, while the long-run analysis captures 

persistent influences that shape innovation trajectories. This comprehensive 

approach contributes to a deeper understanding of how knowledge recombination 

and application influence DI.  

In order to validate our findings, this study analyses annual patent data from 1980 to 

2010. Unit root tests, including the Augmented Dickey-Fuller and Phillips-Perron 

tests, are applied to ensure the stationarity of the variables. Given the mixed 

integration order commonly found in time-series data, the ARDL bounds test is 

applied to determine the presence of long-run relationships between DI and the 

knowledge examined in this study. The findings indicate that, over the long run, a 

higher diversity of knowledge sources enhances disruptive innovation, whereas 

broader knowledge integration has an adverse effect, and the influence of knowledge 

depth is not statistically significant. In the short run, increased knowledge depth plays 

a positive role in fostering disruptive innovation, while greater knowledge source 

diversity presents challenges, and knowledge breadth does not exhibit a noticeable 

impact. 

Building on these findings, this study makes several contributions to the literature. 

First, they provide a deeper understanding of the mechanisms underlying the 

observed decline in disruptiveness, highlighting the lack of sufficient analysis on the 

temporal evolution of knowledge structures. Second, by employing the ARDL model, 

this study offers a methodological advancement that allows for the investigation of 

DI from a dynamic perspective, capturing both short-run adjustments and long-run 

equilibrium relationships. Third, the study provides actionable insights for 

policymakers and innovation managers by emphasizing the importance of balancing 

knowledge diversity, breadth, and depth across different time horizons to foster 

sustained disruptive innovation. 

Related Work 

The theory of disruptive innovation was first proposed by Christensen (1997), 

characterized by its non-linear technological trajectory. Unlike traditional 

mainstream technologies, disruptive innovation advances through differentiated 

strategies to achieve competitive advantage (Hang et al., 2015). Existing studies have 

defined the concept from various perspectives, including technological 

characteristics (Nagy et al., 2016; Reinhardt and Gurtner, 2015), innovation 

processes (Levina, 2017), and innovation impacts (Suseno, 2018). These studies have 

also explored disruptive innovation across multiple levels, including the individual 

(Osiyevskyy and Dewald, 2015), firm (Van Balen et al., 2019), industry (Chevalier-

Roignant et al., 2019), and network/ecosystem levels (Ruan et al., 2014). Despite 

widespread attention from academia and practice, the core concept of disruptive 

innovation remains ambiguous and inconsistent, which limits the development of the 

theory. Specifically, the mechanisms of disruptive innovation in technological 

contexts and its relationship with knowledge structures require further exploration. 

Knowledge structure, as a critical driver of innovation, is commonly described 

through two dimensions: knowledge breadth and depth. These dimensions constitute 
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key elements of the knowledge base. Knowledge breadth refers to the extent to which 

a patent integrates knowledge from multiple fields, reflecting the degree to which 

diverse ideas are synthesized within the innovation itself. In contrast, knowledge 

depth represents specialized expertise within a specific field, emphasizing the 

sophistication of technological development (Zou et al., 2019). Existing research 

indicates that knowledge breadth facilitates innovation, particularly disruptive 

innovation, by enabling diverse combinations of technologies and cross-domain 

integration (Xu et al., 2015). However, excessive knowledge breadth may lead to 

resource dispersion and coordination complexities, thereby hindering innovation 

efficiency (Jin et al., 2015). In contrast, knowledge depth strengthens technological 

advantages in specific fields, supporting incremental innovation (Boh et al., 2014). 

Yet, over-reliance on knowledge depth may limit adaptability to emerging 

technologies, particularly in rapidly changing technological environments. 

Knowledge source diversity introduces an external driving force for technological 

innovation. On one hand, diverse knowledge sources enrich opportunities for 

technological combinations and enhance innovation capacity. For instance, Dogru et 

al. (2019) highlighted that integrating knowledge from different sources significantly 

improves innovation performance, especially in resource-constrained contexts. 

Additionally, knowledge source diversity provides the necessary resilience and 

adaptability for disruptive innovation, enabling technical systems to address path 

dependency and uncertainties (Luo et al., 2024). On the other hand, excessive 

diversity in knowledge sources may increase coordination challenges and integration 

costs, thereby negatively impacting innovation efficiency. Hajialibeigi (2023) 

identified an inverted U-shaped relationship between knowledge source diversity and 

innovation performance, where moderate diversity optimizes resource utilization 

while excessive diversity exacerbates management complexity. Furthermore, the 

impact of knowledge source categories on technological innovation differs 

significantly. Abdul Basit and Medase (2019) demonstrated that public sector 

knowledge better promotes technological innovation in manufacturing, whereas 

private sector knowledge integration is more effective in service industries. 

Data and Method 

Data and variables 

To investigate the short-run and long-run dynamics between disruptive innovation, 

knowledge source diversity, breadth and depth, this study utilizes patent data 

obtained from the PatentView database. This comprehensive database includes 

detailed information on patents from 1976 to 2024, encompassing inventor details, 

patent and application metadata, assignee and location information, as well as 

International Patent Classification (IPC) data. 

The database further provides access to the full text of patents, which includes three 

key sections: abstract, claims, and description. The claims section outlines the scope 

of the legal protection granted to the patent, while the description section provides a 

detailed explanation of the invention or innovation’s technical characteristics. The 

abstract offers a summary of the content in both the claims and description sections. 
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To analyse the genuine technological attributes of patented inventions, this study 

exclusively relies on the description section.  

Disruptive Innovation. Disruptive innovation is measured using the CD index, which 

was developed by Funk and Owen-Smith (2017) and later applied by Park et al. 

(2023). The CD index quantitatively captures whether a patent consolidates existing 

knowledge or disrupts the technological status quo. Consolidating patents build upon 

prior knowledge and reinforce established trajectories, whereas disruptive patents 

render earlier work obsolete and chart new technological directions. The CD index 

ranges from -1 to 1, where -1 indicates a highly consolidating innovation, and 1 

signifies a highly disruptive innovation.  

This study adopts the five-year post-publication window used by Park et al. (2023), 

referred to as CD5, to evaluate the disruptive potential of patents. The starting year 

of analysis is 1980, aligns with Park et al.’s dataset to ensure consistency in the time 

window and methodology. The calculation of the CD index also follows the exact 

formula proposed by Park et al. (2023). Using this standardized approach ensures 

comparability with prior studies and allows for robust exploration of the relationships 

between disruptive innovation and knowledge dimensions, including breadth, depth, 

and source diversity. 

Knowledge Source Diversity. The Knowledge Source Diversity (KSD) measures the 

extent to which a patent integrates knowledge from multiple technological categories, 

based on the NBER two-digit technology classification. The NBER classification 

system, developed by Hall et al. (2001), provides a standardized framework for 

categorizing patents into broad technological fields, facilitating cross-field 

comparisons, and enabling robust analyses of knowledge diversity. In this study, the 

classification of patents into NBER technology categories is obtained directly from 

the PatentView database, ensuring consistency and reliability in the analysis. To 

calculate KSD, the references cited by each patent are analysed to determine their 

distribution across NBER technology categories. The diversity of these references is 

quantified using an entropy-based approach, which accounts for both the number of 

categories referenced and the balance among them. Patents with higher KSD indicate 

a greater reliance on knowledge inputs from multiple distinct technological fields, 

reflecting their ability to integrate diverse sources of knowledge. This diversity is 

hypothesized to enhance the potential for creative recombination of ideas, which is 

often a critical driver of disruptive innovation. 

Knowledge Breadth. The Knowledge breadth (KB) is defined as the extent to which 

a patent draws upon vocabulary from multiple technological fields. Following the 

methodology outlined in Bowen et al. (2023), this metric is constructed by first 

calculating the frequency of word usage across technological fields for each year. A 

word is tagged as specialized in a particular field if its usage in that field exceeds 

150% of its usage in the second most prominent field during the same year. Words 

that do not meet this criterion are classified as unspecialized and excluded from 

further analysis. For each patent, the fraction of specialized words classified into each 

field is then calculated, with these fractions summing to one for every patent. Using 

this classification, technological breadth is defined as one minus the concentration of 

specialized words, thereby reflecting the diversity of fields from which a patent draws 
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its vocabulary. Patents with high knowledge breadth integrate terminology from a 

wider range of fields, indicating a more diverse knowledge base: 

Knowledge Depth. The Knowledge Depth (KD) measures the extent of focus within 

a single technological field, and is calculated based on the concentration of a patent’s 

classification within a specific four-digit International Patent Classification (IPC4) 

code. The IPC4 system provides a highly granular framework for categorizing 

patents, often used as a proxy for defining technological fields. By examining the 

proportion of a patent’s classifications that fall within its most dominant IPC4 

category, knowledge depth captures the degree to which a patent concentrates on a 

single technological field. Patents with high knowledge depth often exhibit a 

deliberate emphasis on advancing a particular field, suggesting a refined 

specialization that may impact incremental innovations or significant technical 

improvements within that domain. By anchoring the measurement of depth in the 

IPC4 classification, the analysis ensures precision in capturing the technical focus of 

each patent. This reliance on established knowledge structures may enhance 

efficiency in knowledge utilization. All variables and their description are shown in 

Table 1. 

 
Table 1. Variables description. 

Variables Description 

CD Measured using the CD index, developed by Funk and Owen-Smith 
(2017) and applied by Park et al. (2023). The index ranges from -1 

(highly consolidating) to 1 (highly disruptive), with CD5 calculated 

over a five-year post-publication window to evaluate a patent's 

influence on obsolescing or reinforcing prior knowledge. 
Knowledge 

Source Diversity 

(KSD) 

Reflects the variety of technological categories from which a patent 

integrates knowledge. Based on the NBER two-digit technology 

classification and calculated using entropy to measure the diversity 
of references cited by each patent across multiple fields. 

Knowledge 

Breadth (KB) 

Captures the diversity of technological fields from which a patent 

draws its vocabulary. Calculated as one minus the concentration of 
a patent's classification into six broad fields, reflecting the extent to 

which the patent spans multiple domains. Derived using field-

specific data from the patent text and classification systems. 

Knowledge  
Depth (KD) 

Measures the extent of focus within a single technological field. 
Calculated based on the proportion of a patent's classifications 

concentrated within its most dominant IPC4 code, representing a 

refined specialization in a specific domain. 

 

The rationale for employing distinct operational measures for KSD, KB, and KD is 

grounded in their theoretical separation, empirical complementarity, and granular 

alignment with the conceptual constructs. Although these dimensions are interrelated, 

they reflect fundamentally different structural layers of knowledge, which 

necessitates differentiated yet coherent measurement strategies. First, KSD captures 

the diversity of technological origins, for which the NBER 2-digit classification is 

particularly suited. Its coarse granularity reflects broader source fields (e.g., 

Chemicals, Electronics, Drugs), and has been widely used to proxy knowledge origin 
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variety in macro-level innovation studies (Hall et al., 2001). NBER codes aggregate 

IPC-based patent classes according to economically meaningful technological 

sectors, thus aligning closely with the idea of where knowledge comes from. Second, 

KD is intended to reflect technological specialization, which demands greater 

classification precision. The IPC 4-digit level provides such fine-grained technical 

delineation, enabling us to observe how concentrated a patent’s technical focus is. 

Compared with higher-level IPC or NBER codes, IPC4 provides domain stability 

and domain resolution, making it the most valid proxy for focused depth within a 

technological field. Third, KB concerns the semantic recombination and 

interdisciplinary expression of knowledge within the patent text. To this end, a 

vocabulary-based approach is employed, tracking the field-specific concentration of 

technical terms used in abstracts and claims. This textual metric captures horizontal 

conceptual integration at a finer level than taxonomic classifications, especially in 

domains where innovation involves hybrid or emergent concepts not yet classified in 

IPC/NBER systems. While the data sources and granularity differ across these three 

variables, they are intentionally selected to match the theoretical domain of each 

construct: broad origin domains (KSD), fine technical depth (KD), and semantic 

conceptual spread (KB). These differences do not imply inconsistency but rather 

reflect the layered nature of knowledge structures in innovation. We explicitly 

acknowledge that the classification schemes are non-nested and differ in dimensional 

logic. However, their temporal aggregation into annual panel data and their 

independent derivation from non-overlapping sources reduce concerns about 

collinearity or semantic redundancy. Moreover, our ARDL model framework allows 

for distinct lag structures, further reducing risks of artificial convergence. 

Methodology and model specification 

Econometric methods that investigate the temporal dynamics of innovation processes 

are essential for understanding how variables interact over time. These approaches 

enable the analysis of both short-run fluctuations and long-run equilibrium 

relationships, offering valuable insights into the mechanisms impacting disruptive 

innovation and its connections to knowledge dimensions such as source diversity, 

breadth and depth. Given the need to examine these dynamics comprehensively, this 

study adopts the Autoregressive Distributed Lag (ARDL) bounds testing model, 

introduced by Pesaran et al. (1999) and later developed further (Pesaran, et al., 2001), 

to explore the cointegration processes and temporal interactions among the variables. 

The ARDL approach not only estimates cointegration and long-run equilibrium 

relationships but also captures dynamic effects in both time horizons, offering a 

comprehensive framework for understanding temporal interactions.  

The ARDL methodology is particularly advantageous for several reasons. First, it is 

highly flexible and can accommodate variables with mixed integration orders, 

whether I (0) or I (1). Second, the single-equation setup simplifies implementation 

and interpretation compared to traditional cointegration methods. Third, it allows for 

different lag lengths to be specified for different variables, enhancing the model’s 

adaptability to the data. Fourth, the method is well-suited for small sample sizes, 

providing robust estimates of long-run relationships and parameters. Finally, the 

ARDL model effectively addresses potential issues of autocorrelation and 
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endogeneity, ensuring unbiased and reliable results (Harris and Sollis, 2003; Jalil and 

Ma, 2008). 

Given these strengths, the ARDL approach is employed in this study to examine the 

temporal dynamics between disruptive innovation and its key regressors, such as 

knowledge source diversity, breadth and depth. The method is applied to identify 

both the long-run equilibrium relationships and the short-run adjustments that occur 

in response to deviations from equilibrium. The subsequent steps for verifying these 

dynamics within the ARDL framework are outlined in the following sections. 

Stationarity test. Stationarity is a critical consideration in time-series analysis, as it 

ensures the validity of econometric models and the reliability of their results. Time-

series data have diverse applications across various fields, and identifying the 

appropriate trend structure of the data represents an essential econometric task 

(Mushtaq, 2011). To determine the stationarity of the variables, this study employs 

the Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root tests. These 

tests are widely used to identify whether variables are stationary at their levels or 

become stationary after differencing. The results of these tests guide the appropriate 

application of the Autoregressive Distributed Lag (ARDL) approach, which is 

capable of handling variables integrated at different orders. Specifically, the ARDL 

model can accommodate variables that are stationary at level (I(0)), at first difference 

(I(1)), or a combination of the two, making it a robust method for analysing the 

cointegration and temporal dynamics among time-series variables. 

Autoregressive Distributed Lag bounds test. The bounds testing procedure is utilized 

in this study to examine whether a single long-run relationship exists among the 

variables under investigation. The ARDL bounds test evaluates cointegration by 

testing the joint significance of the coefficients of the lagged levels of the variables 

in a single-equation model. The model for the bounds test is specified as follows: 

∆𝐶𝐷𝑡 = 𝛼 +∑𝛽𝑖∆𝐶𝐷𝑡−𝑖

𝑝

𝑖=1

+∑𝛾𝑖∆𝐾𝐵𝑡−𝑖 +

𝑞

𝑖=0

∑𝛿𝑖∆𝐾𝐷𝑡−𝑖 +

𝑟

𝑖=0

∑𝜂𝑖∆𝐾𝑆𝐷𝑡−𝑖

𝑠

𝑖=0

 

+𝜃1𝐶𝐷𝑡−1 + 𝜃2𝑙𝑛𝐾𝐵𝑡−1 + 𝜃3𝑙𝑛𝐾𝐷𝑡−1 + 𝜃4𝑙𝑛𝐾𝑆𝐷𝑡−1 + 𝜖𝑡 
 

In this equation, Δ denotes the first-difference operator, CDt is the disruptive 

innovation index, and KBt, KDt, and KSDt represent knowledge breadth, depth, and 

source diversity, respectively. The optimal lag lengths (p, q, r, s) are determined using 

the Akaike Information Criterion (AIC), which minimizes information loss and 

ensures the model is parsimonious while retaining explanatory power. The 

coefficients 𝜃1, 𝜃2, 𝜃3, 𝜃4 capture the long-run equilibrium relationships, while the 

summations account for short-run dynamics. The term 𝜖𝑡  captures any variations 

unexplained by the model, ensuring the robustness of the estimation process. 
To evaluate the existence of a cointegration relationship, the ARDL bounds test is 

applied. This test compares the calculated F-statistic to critical bounds for the null 

hypothesis (H0), which assumes no cointegration among the variables, and the 

alternative hypothesis (H1), which posits the presence of cointegration. A rejection 

of H0 occurs when the F-statistic exceeds the upper critical bound, indicating a stable 

long-run relationship among the variables. Conversely, if the F-statistic falls below 
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the lower bound, the null hypothesis cannot be rejected. When the F-statistic lies 

between the bounds, the result is inconclusive, requiring further investigation. 

Once a long-run relationship is confirmed through the ARDL bounds testing 

approach, the model is re-specified into an Error Correction Model (ECM) to 

estimate both short-run dynamics and the speed of adjustment back to the long-run 

equilibrium. The ECM effectively integrates short-run fluctuations and long-run 

relationships within a single framework, ensuring the model captures both immediate 

and equilibrium effects of the independent variables on disruptive innovation. The 

ECM for this study is specified as follows: 
∆𝐶𝐷𝑡

= 𝛼 +∑𝛽𝑖∆𝐶𝐷𝑡−𝑖

𝑝

𝑖=1

+∑𝛾𝑖∆𝐾𝐵𝑡−𝑖 +

𝑞

𝑖=0

∑𝛿𝑖∆𝐾𝐷𝑡−𝑖 +

𝑟

𝑖=0

∑𝜂𝑖∆𝐾𝑆𝐷𝑡−𝑖

𝑠

𝑖=0

+ 𝜏𝐸𝐶𝑇𝑡−1 + 𝜖𝑡 

 

The ECM framework is particularly valuable because it allows the separation of 

short-run dynamics from long-run equilibrium behaviour while maintaining a 

consistent representation of the temporal relationships among variables. The short-

run effects are captured by the coefficients of the lagged differences, which provide 

insights into the immediate impacts of changes in knowledge dimensions on 

disruptive innovation. Meanwhile, the Error Correction Term (ECT) integrates the 

short-run adjustments with the long-run relationship, ensuring that deviations from 

equilibrium are systematically corrected over time. 

By applying the ECM within the ARDL framework, this study is able to investigate 

not only how knowledge breadth, depth, and source diversity influence disruptive 

innovation in the long run, but also how these variables interact dynamically in the 

short run. This dual focus provides a comprehensive understanding of the temporal 

mechanisms impacting innovation processes. 

Stability test. Ensuring the stability of regression models is critical when working 

with autoregressive structures, as stability confirms the robustness of estimated 

coefficients over time. In this study, the CUSUM of squares approach, as proposed 

by Brown et al. (1975), is employed to evaluate the dynamic stability of the model. 

The CUSUM of squares test provides a graphical representation of stability, where 

the plotted test statistic is compared against a confidence interval. If the test statistic 

remains within the confidence bounds, the model is considered stable, indicating no 

significant changes in the regression coefficients over time. Conversely, if the 

statistic crosses the bounds, it suggests potential instability, requiring further 

investigation. 

Empirical findings 

This study employs multivariate time-series data from 1980 to 2010, with annual 

observations to mitigate the influence of seasonal variations. The annual data are 

derived by calculating patent-level indicators for each year and then averaging these 

values at the yearly level, ensuring a consistent representation of trends over time. 

The analysis focuses on identifying the relationships between disruptive innovation 

and various knowledge dimensions over time.  
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Summary statistics 

The descriptive statistics for the key study variables is provided in Table 2, including 

disruptive innovation (CD), knowledge breadth (lnKB), knowledge depth (lnKD), 

and knowledge source diversity (lnKSD). The mean value of CD is 0.127, with a 

standard deviation of 0.098, indicating moderate variation in disruptive innovation 

across the sample period. The minimum and maximum values of CD range from 

0.030 to 0.388, reflecting substantial differences in the disruptiveness of innovations 

over time. Knowledge breadth (lnKB) exhibits a mean value of 0.364 with relatively 

low variability (S.D. = 0.023), suggesting a consistent level of knowledge integration 

across patents. Knowledge depth (lnKD) has a slightly higher mean of 0.528 and also 

demonstrates low variability (S.D. = 0.017), highlighting the stable specialization 

within individual technological fields. In contrast, knowledge source diversity 

(lnKSD) shows the highest mean of 0.684 with minimal variation (S.D. = 0.003), 

indicating that patents consistently rely on a diverse set of external knowledge 

sources. 

 
Table 2. Summary statistics of study variables. 

Variables Mean S.D. Min Max 

CD 0.127 0.098 0.030 0.388 

lnKB 0.364 0.023 0.313 0.397 

lnKD 0.528 0.017 0.488 0.561 

lnKSD 0.684 0.003 0.677 0.687 

 

Together, these descriptive statistics and time trends highlight the dynamic 

relationships between disruptive innovation and the key knowledge dimensions, 

providing a foundation for exploring their short-run and long-run interactions in 

subsequent analyses. 

Stationarity test 

In this study, stationarity of the variables was tested using both the Augmented 

Dickey-Fuller (ADF) and Phillips-Perron (PP) tests, with the results summarized in 

Table 3. The stationarity test results reveal that, except for the variable CD, all 

variables become stationary after applying the first difference. Specifically, the 

results indicate that at the level, none of the variables, except for CD, exhibit 

stationarity. However, after taking the first difference, all variables—namely the 

logarithms of knowledge breadth (lnKB), knowledge depth (lnKD), and knowledge 

source diversity (lnKSD)—become stationary. The variable CD, on the other hand, 

is stationary at the level, confirming that it does not require differencing. This mixed 

order of integration among the variables suggests that an Autoregressive Distributed 

Lag (ARDL) bound approach is appropriate for modeling the relationship between 
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the variables, as it can accommodate variables with different integration orders (i.e., 

I (0) and I (1)). 

 
Table 3. Stationarity test statistics. 

Variables 
ADF Test  PP Test  

Stationary 

Remark Level First difference  Level First difference  

CD -4.873*** 

(0.000) 

-  -3.870*** 

(0.013) 

-  I (0) 

lnKB -0.191 

(0.992) 

-5.894*** 

(0.000) 

 -0.196 

(0.992) 

-5.872*** 

(0.000) 

 I (1) 

lnKD -2.676 

(0.246) 

-4.637*** 

(0.001) 

 -2.722 

(0.227) 

-4.574*** 

(0.001) 

 I (1) 

lnKSD -1.596 
(0.794) 

-7.120*** 
(0.000) 

 -1.325 
(0.882) 

-7.105 
(0.000) 

 I (1) 

Note: An intercept term and a trend term have been included in all unit-root tests. 
Significance levels are denoted as 1%, 5%, and 10% with ***, **, and * respectively. 

 

ARDL bounds test 

To determine the optimal lag length for the model, the Akaike Information Criterion 

(AIC) was utilized. Based on this criterion, the chosen model is ARDL (1, 0, 2, 2). 

This means that the optimum lag lengths for the variables CD, lnKB, lnKD, and 

lnKSD are p=1, q=0, r=2 and s=2, respectively. The results of the ARDL bounds test 

are presented in Table 4, which includes the F-statistics values for testing the 

presence of a long-run relationship between the variables. 
  

Table 4. ARDL bounds test (F-statistic). 

F-statistic  

Value 

 Null hypothesis: no levels of relationship 

Significance level I (0) I (1) 

Value of F-statistic  31.232  10.0% 2.72 3.77 

K  3  5.0% 3.23 4.35 

Critical Value Bounds  0.1-0.01  2.5% 3.69 4.89 

    1.0% 4.29 5.61 

 

Since the F-statistic value exceeds the critical values for both I (0) and I (1), this 

provides strong evidence of a long-run relationship among the variables. The results 

suggest that the knowledge dimensions (KB, KD, KSD) are jointly influencing 
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disruptive innovation in the long-run, while the variables move together toward an 

equilibrium over time. 

ARDL adjustment estimation, long-run and short-run relationships 

The ARDL adjustment estimates is reported in Table 5, indicating how the variables 

align with the long-run equilibrium following deviations. The coefficient of CD L1 

is −0.135, which is negative and statistically significant at the 1% level. This value 

reflects the proportion of the adjustment toward long-run equilibrium in response to 

deviations. Specifically, approximately 13.5% of the disequilibrium is corrected 

within one year, indicating that the variables are gradually realigned with their long-

run equilibrium. The statistically significant negative coefficient also suggests a 

stable long-run relationship, with adjustments occurring systematically over time.  

 
Table 5. ARDL adjustment estimates. 

D.CD Coef. Std.error T P >|t| [95% Conf. Interval] 

CD. L1. -0.135*** 0.023 -5.98 0.00 -0.181    -0.088 

Note: Significance levels are denoted as 1%, 5%, and 10% with ***, **, and * respectively. 

 

The long-run estimates obtained from the ARDL model is presented in Table 6, 

illustrating the sustained relationships between disruptive innovation and the 

knowledge dimensions: breadth, depth, and source diversity. The coefficient of 

knowledge breadth (lnKB) is negative and statistically significant at the 1% level. 

This indicates that in the long run, an increase in knowledge breadth is associated 

with a reduction in disruptive innovation. This may reflect the trade-off between 

generalization and specialization, where increased knowledge breadth could dilute 

the focus needed for achieving disruptive breakthroughs. The coefficient of 

knowledge depth (lnKD) is negative but not statistically significant. This result 

implies that knowledge depth does not show a strong long-run influence on disruptive 

innovation during the study period. This finding may suggest that depth alone is 

insufficient to drive innovation without the complementary effects of breadth or 

diversity. The coefficient of knowledge source diversity (lnKSD) is positive and 

statistically significant at the 1% level. This indicates a strong positive long-run 

relationship between knowledge source diversity and disruptive innovation. The 

result suggests that integrating diverse sources of knowledge significantly enhances 

the potential for disruptive breakthroughs, potentially due to the cross-pollination of 

ideas from different fields or disciplines. 
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Table 6. ARDL long-run estimates. 

Variables Coef. Std.error T P >|t| [95% Conf. Interval] 

lnKB -1.276*** 0.396 -3.23 0.004 -2.101    -0.451 

lnKD -0.558 0.988 -0.57 0.578 -2.619    1.503 

lnKSD 18.942*** 4.209 4.50 0.000 10.161    27.722 

Note: Significance levels are denoted as 1%, 5%, and 10% with ***, **, and * respectively. 

 

Table 7 reports the short-run estimates from the ARDL model, capturing the 

immediate effects of knowledge dimensions on disruptive innovation. The results 

indicate that the variable knowledge breadth (lnKB) does not return significant short-

run coefficients, suggesting that it may not play a measurable role in influencing 

disruptive innovation within the short-run time horizon. This lack of significant 

results could be attributed to the inherently gradual nature of the effects of knowledge 

breadth, which may require longer periods to manifest its impact on innovation 

outcomes. For knowledge depth (lnKD), the results reveal a positive and statistically 

significant short-run relationship with disruptive innovation. At lag order 0, the 

coefficient is 0.270, significant at the 1% level, indicating that an immediate increase 

in knowledge depth is associated with a rise in disruptive innovation. This positive 

relationship persists at lag order 1, with a smaller coefficient of 0.185, which is 

significant at the 10% level. These findings suggest that while knowledge depth 

contributes positively to disruptive innovation in the short run, the magnitude of its 

impact diminishes slightly over time. In contrast, knowledge source diversity (lnKSD) 

shows a consistently negative and statistically significant short-run relationship with 

disruptive innovation. At lag order 0, the coefficient is -4.829, significant at the 1% 

level, indicating that an increase in knowledge source diversity imposes short-run 

challenges on innovation processes. This negative impact persists at lag order 1, with 

a coefficient of -4.953, also significant at the 1% level. The consistent short-run 

negative effects of knowledge diversity suggest that the integration of diverse 

knowledge sources may introduce complexities and inefficiencies that hinder 

immediate innovation outcomes, despite its positive influence in the long run. The 

overall model demonstrates a strong fit, as reflected by the R-squared value of 0.936, 

which indicates that 93.6% of the variation in disruptive innovation can be explained 

by the short-run dynamics of the model. 
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Table 7. ARDL short-run estimates. 

Variables Coefficient Estimates 

Lag order 0 1 

ΔlnKB - - 

ΔlnKD 0.270*** 

(0.011) 

0.185* 

(0.092) 

ΔlnKSD -4.829*** 
(0.001) 

-4.953*** 
(0.000) 

R2 0.936  

Note: Short-run estimators for first lagged have been depicted by Δ. Significance levels are 
denoted as 1%, 5%, and 10% with ***, **, and * respectively. 

 

Stability test findings 

The cumulative sum of squares (CUSUM square) plot is illustrated in Figure 1, which 

is used to assess the stability of the regression coefficients in the specified model. 

The test was conducted with a 5% significance level, and the shaded area represents 

the confidence interval under the null hypothesis of stability. The red plot line 

indicates the recursive cumulative sum of squares. The stability of the model is 

determined by examining whether the red plot line remains within the shaded 

confidence bands throughout the observation period. As shown in Figure 1, the 

cumulative sum of squares stays entirely within the 95% confidence interval. This 

confirms that there is no significant deviation from stability over the study period. At 

the 5% significance level, the results provide evidence of the stability of the 

regression coefficients. The findings indicate that the model is robust and the 

relationships among the variables remain consistent over time. 
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Figure 1. CUSUM Squares Plot with a 5 % level of significance. 

 

Discussion 

The findings of what knowledge is combined (knowledge source diversity) and how 

knowledge is applied (knowledge breadth and depth) reveal dynamic and time-

dependent patterns in their effects on innovation. Knowledge source diversity, 

representing the richness of external inputs, negatively impacts innovation in the 

short run, reflecting integration challenges, yet demonstrates significant positive 

effects in the long run, highlighting its transformative potential. In contrast, 

knowledge breadth and depth, which capture the internal application of knowledge, 

present opposite dynamics: breadth remains insignificant in the short term but 

negatively influences innovation over time, while depth fosters short-run 

advancements but loses its significance in the long run. These seemingly paradoxical 

results raise important questions about the temporal trade-offs and interactions 

between external diversity and internal application, providing the foundation for a 

deeper analysis of the mechanisms underlying these patterns. 

 
Table 8. Long-run and short-run effects of different variables. 

Dependent Variable: CD Long-run estimate Short-run estimate 

lnKB Significant negative  - 

lnKD - Significant positive  

lnKSD Significant positive  Significant negative 



 1864 

 

Focused paths or fragmented horizons: the temporal trade-offs of leveraging 

knowledge 

The contrasting short- and long-run effects of knowledge breadth and depth reveal 

the dynamic complexities of how knowledge is leveraged in impacting innovation. 

In the short run, knowledge depth emerges as a significant positive factor, 

underscoring the power of specialization to provide focused pathways for immediate 

technical advancements. By concentrating resources within specific fields, depth 

enables the swift resolution of technical challenges and accelerates innovation within 

well-defined domains. However, over time, this very focus can lead to diminishing 

returns, as excessive specialization restricts adaptability and reduces opportunities 

for cross-domain exploration, ultimately limiting its long-run influence on 

innovation. 

Conversely, knowledge breadth shows no significant impact in the short run, 

suggesting that the integration of diverse knowledge inputs often requires time to 

coordinate. Yet, in the long run, breadth exhibits a negative effect, pointing to the 

potential pitfalls of excessive diversification. While broader knowledge integration 

holds promise for fostering interdisciplinary breakthroughs, it also increases the 

complexity of coordination and the risk of resource fragmentation. Over time, these 

challenges may outweigh the benefits, resulting in innovations that are incremental 

rather than disruptive. This temporal trade-off highlights the critical balance required 

between specialization and diversification to optimize innovation outcomes over 

different time horizons. 

A double-edged sword: the temporal dynamics of knowledge source diversity 

The dual impacts of knowledge source diversity (KSD) on innovation over the short 

and long run highlight its role as both a catalyst and a challenge. In the short term, 

KSD exhibits a significant negative effect, suggesting that the inherent complexity 

of integrating diverse external knowledge sources can temporarily hinder innovation. 

This may arise from the increased coordination costs, alignment challenges, and the 

need for firms or inventors to navigate conflicting perspectives and methodologies. 

Such complexities often delay the realization of tangible innovation benefits, creating 

a temporal "integration burden" that suppresses short-run performance. 

In contrast, the long-run positive impact of KSD underscores its transformative 

potential once integration barriers are overcome. Diverse knowledge sources enrich 

the innovation process by introducing novel ideas, fostering cross-boundary 

synergies, and enabling adaptability to changing technological and market 

landscapes. Over time, these benefits accumulate, impacting breakthroughs that are 

less likely to emerge from homogenous or narrowly focused knowledge pools. This 

positive effect reflects the delayed yet powerful rewards of leveraging external 

diversity, as innovation systems adapt to complexity and transform it into a source 

of competitive advantage. 

The contrasting short- and long-run effects of KSD illustrate the importance of 

temporal dynamics in understanding the innovation process. While diversity can 

impose short-run costs, its long-run benefits reveal the necessity of investing in 

mechanisms that facilitate the effective integration and utilization of heterogeneous 
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knowledge sources. This double-edged sword demands strategic foresight to balance 

the immediate challenges with the long-run opportunities it affords. 

Internal Breadth vs. External Diversity: divergent long-run paths to innovation 

The contrasting long-run effects of knowledge breadth (KB) and knowledge source 

diversity (KSD) underscore their fundamentally different mechanisms in shaping 

innovation outcomes. While both dimensions represent forms of diversity, their 

influence diverges due to the distinct ways they interact with innovation systems over 

time. 

Knowledge breadth, rooted in the internal integration of diverse knowledge fields 

within a patent, exerts a negative long-run impact on innovation. This outcome 

suggests that an overly broad internal knowledge base can lead to resource dispersion 

and coordination challenges that dilute focus. As the complexity of managing 

disparate knowledge fields grows, the innovation process may become fragmented, 

resulting in incremental improvements rather than disruptive breakthroughs. The 

negative effect of KB highlights the inherent difficulty of maintaining coherence and 

depth when attempting to integrate too many diverse internal elements over extended 

periods. 

In contrast, knowledge source diversity, which reflects the richness of external inputs, 

exhibits a significant positive impact in the long run. This result points to the 

cumulative advantages of drawing from diverse external knowledge sources, which 

enrich the innovation process by introducing novel perspectives and fostering cross-

boundary synergies. Unlike internal breadth, external diversity benefits from the 

broader ecosystem's adaptability and collaborative potential. Over time, 

organizations and inventors are better able to overcome the initial challenges of 

integrating diverse sources, transforming external complexity into a platform for 

sustained innovation and adaptability to emerging trends. 

The divergent long-run effects of KB and KSD highlight the critical distinction 

between internal and external diversity. While internal breadth often struggles with 

the constraints of resource allocation and focus, external diversity thrives on the 

dynamism of collaborative ecosystems and the ability to recombine knowledge from 

varied origins. Understanding these differences underscores the importance of 

aligning knowledge strategies with the unique demands of long-run innovation, 

leveraging external diversity to complement and counterbalance the limitations of 

internal breadth. 

Conclusion 

In recent decades, the innovation landscape has undergone profound changes driven 

by increasingly complex knowledge structures. This study contributes to a more 

dynamic understanding of how knowledge source diversity (KSD), breadth (KB), 

and depth (KD) influence disruptive innovation over time. By applying an 

Autoregressive Distributed Lag (ARDL) model to global patent data from 1980 to 

2010, we reveal that the innovation impact of different knowledge structures varies 

significantly across temporal dimensions. Specifically, KSD exerts a positive 

influence on disruptive innovation in the long run, affirming its role in enabling 

cross-boundary novelty and technological recombination. However, its short-run 
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effect is negative, reflecting the coordination burdens and integration frictions 

associated with heterogeneous knowledge inputs. KB shows a significant long-run 

negative effect, suggesting that excessive internal diversification may dilute 

technological coherence and hinder breakthrough potential. In contrast, KD 

contributes positively in the short run, but its long-run influence is not significant, 

highlighting the temporal limits of domain-specific specialization. 

These findings offer practical insights into how innovation systems can reconcile the 

temporal trade-offs inherent in leveraging diverse knowledge structures. In particular, 

the short-term coordination burden and long-term disruptive potential of KSD 

underscore the need for governance structures that are explicitly designed to absorb 

temporal friction. Rather than merely increasing collaboration, innovation 

infrastructures must function as temporal bridges—buffering early-stage integration 

inefficiencies while preserving long-term recombinability. To achieve this, 

governments and funding agencies should support modular and phase-based 

knowledge integration mechanisms, such as two-stage public-private R&D consortia 

that separate exploratory knowledge matching from solution development phases. 

Additionally, platform-based digital infrastructure (e.g., centralized research asset 

registries, structured metadata repositories) can be developed to reduce search and 

alignment costs among disparate actors during early-stage collaboration. Regarding 

the long-run negative effects of KB, the results suggest that while internal 

interdisciplinarity holds conceptual appeal, it may introduce latent coordination 

complexity over time. Therefore, knowledge integration within single organizations 

should be governed through strategic modularization. Funding programs and 

institutional evaluations should move away from undirected interdisciplinarity and 

instead encourage bounded integration, such as matrix organizational structures that 

allow domain-specific subunits to recombine outputs selectively, avoiding wholesale 

internal diffusion. Furthermore, mid-term evaluation checkpoints can help prevent 

project over-extension by identifying when internal breadth begins to hinder 

coherence. Finally, the short-run positive but long-run insignificant role of KD 

highlights that short-term technical expertise alone is insufficient to sustain 

breakthrough trajectories. Policy frameworks should therefore incentivize depth-to-

diversity transitions over time. For example, project funding could adopt tapered 

incentive schemes, in which early-stage funding rewards technical depth, while 

renewal or scaling-up depends on demonstrable cross-domain expansion. 

Additionally, career development tracks in public R&D institutions can be designed 

to encourage temporal diversification—starting from vertical expertise and gradually 

incorporating horizontal collaborations, ensuring that individual-level knowledge 

accumulation aligns with systemic innovation needs. 

This study also has several limitations that warrant further investigation. First, our 

analysis adopts the CD index as the sole measure of disruptive innovation. While this 

indicator has been validated in recent large-scale studies, alternative metrics such as 

novelty scores, radicalness indicators, or paradigm-shift detection frameworks may 

capture different facets of disruption. Future research could explore the robustness of 

our results by substituting or triangulating CD with these alternative outcome 

measures. Second, although this study treats KB and KSD as independent dimensions, 

we acknowledge that their relationship may be more complex. In particular, 



 1867 

conceptual breadth may partially arise from exposure to diverse knowledge sources, 

suggesting potential endogeneity or interaction effects. Our current model 

specification does not explicitly test for such interdependencies. Future work could 

address this by introducing interaction terms, structural equation model, or dynamic 

panel techniques to capture potential co-evolution or causal links between KB and 

KSD over time. 
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