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Abstract 

A patent is valuable intellectual property only when granted and held for the long term, and patent 

grant prediction is a potential strategy for reducing the uncertainty of innovation. Existing machine 

learning-based prediction models lack interpretability, making it difficult to effectively mitigate 

innovation risks. This study proposes a novel model for patent prediction that combines high 

predictive accuracy with strong interpretability. (1) First, we employ the KAN model for prediction, 

which replaces traditional neural networks with spline functions, endowing the model with  

interpretability and the ability to generate formula. (2) Additionally, we introduced ensemble learning  

to enhance the performance of the KAN model, resulting in the development of th e EN-KAN model. 

We tested the model on Electronic Communications datasets  and demonstrated strong performance 

while maintaining high interpretability. EN-KAN directly generates mathematical formulas , 

providing a more accurate and intuitive representation of the impact of different factors on the 

prediction results. (3) Moreover, our study reveals that factors at the examiner-level and the patent-

level have the greatest impact on patent grants.  
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Introduction  

Patents operate on a fundamental principle of exchanging public disclosure for legal 

protection, offering innovators a pathway to secure exclusivity, establish 

technological monopolies, and generate economic returns (Nordhaus, 1969). 

However, the failure of a patent application to be granted can impose substantia l 

losses on innovators, not only in terms of the time, resources, and financ ia l 

investment expended but also through the unintended exposure of proprietary 

technologies, potentially forfeiting competitive advantages (Millar et al., 2018). 

Early prediction of patent grant outcomes can empower innovators by improving the 

likelihood of success, informing strategic decision-making in the application process, 

and guiding investment priorities. Although patent laws mandate that applications 

meet the criteria of novelty, inventiveness, and utility (Liegsalz & Wagner, 2013), 

these attributes are often subject to complex and multifaceted influences. The 

interpretive judgments of patent examiners further complicate the process, as their 

decisions are neither fully transparent nor easily predictable. Combined with the 

lengthy application cycles and extensive documentation requirements, these 

challenges make early prediction of patent grant outcomes a complex and urgent 

challenge. 

To address this challenge, prior research has explored various approaches, includ ing 

traditional statistical methods and heuristic analyses, to predict patent grant 

probability (Drivas & Kaplanis, 2020; Gans et al., 2008; D. Yang, 2008; Yao & Ni, 

2023). However, these methods often suffer from limitations, such as 

oversimplification of complex interactions among influencing factors. Machine 

learning (ML) approaches, which can extract latent patterns from large-scale 

empirical data, have increasingly been employed to tackle this problem. For instance, 

ML models have been used to predict the likelihood of innovation failure by 

identifying significant predictors within voluminous datasets (Yao & Ni, 2023). 

Despite their promising predictive accuracy, the inherent “black box” nature of most 

ML algorithms has raised concerns regarding their interpretability, leading to 

skepticism about their conclusions. This lack of transparency has hindered the 

dissemination and practical application of ML-based findings. While some 

researchers have sought to enhance interpretability by appending post hoc 

explanation models, such methods often yield explanations that are either overly 

generalized or insufficiently specific to the contexts of patent examinations. 

Furthermore, prior studies have highlighted the variability in patent grant outcomes 

across different patent authorities and technological fields (Alcácer et al., 2009), 

emphasizing that influencing factors are not universally consistent but contingent on 

the specific jurisdiction and field of innovation. How these contextual factors 

influence patent grants remains unclear. 
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This study proposes a novel interpretable machine learning model, Ensemble 

Kolmogorov-Arnold Network (EN-KAN), to investigate the factors influencing the 

early prediction of patent grant. This model is designed to achieve two primary 

research objectives. First, unlike conventional ML models that rely on post hoc 

interpretability enhancements, KAN incorporates interpretability as a core feature of 

its design, employing knowledge embeddings and structured influence analysis (Liu 

et al., 2024). By comparing KAN with several benchmark algorithms, we 

demonstrate its efficacy and provide visualized explanations of its findings. Our 

results identify critical predictors of patent grant success elucidating their underlying 

mechanisms by formula. Second, we examine the differential impacts of patent 

examination authorities, uncovering jurisdiction-specific patterns and highlighting 

the role of institutional and procedural variations in shaping grant. 

The contributions of this study are twofold. First, we introduce a self-explana tory 

model that accurately predicts patent grant probabilities while identifying key 

determinants of patent success. By integrating interpretable methodologies, this 

research advances the understanding of patent grant processes and provides a robust 

framework for examining the drivers of patent approval. Second, this study offers 

comparative insights across diverse technological domains and patent jurisdictions, 

addressing gaps in the literature regarding the contextual variability of influenc ing 

factors. These findings have practical implications for both patent applicants and 

examiners. For innovators, the results offer actionable guidance for crafting 

application strategies to maximize the probability of success and minimize 

uncertainties, ultimately enhancing the commercial value of patents. For patent 

examiners, the insights enable optimization of examination workflows, improving 

efficiency by focusing on the most impactful variables. Through these contributions, 

this research not only advances academic discourse but also supports evidence-based 

decision-making in the patent ecosystem. 

Literature review 

The influencing factors of patent grant 

The factors influencing patent grant can be categorized into five levels: patent, 

application, applicant and inventor, examiner, and other factors. Table 1 provides a 

summary of these levels and their corresponding factors.  

Patent Level focuses on the intrinsic characteristics of the innovation, includ ing 

novelty, innovativeness, and utility. Novelty and innovativeness are fundamenta l 

traits of patents and serve as key drivers of technological breakthroughs, playing a 

decisive role in patent grant. Prior studies have employed various measures to assess 

novelty, such as the number of International Patent Classification (IPC) categories 
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involved (Harhoff & Wagner, 2009; Liegsalz & Wagner, 2013), the number of 

references cited (G. Yang et al., 2023), and the Herfindahl index (a measure of 

concentration) of cited patent classes. Emerging research highlights the role of 

scientific knowledge in technological innovation, finding that patents utilizing more 

scientific knowledge exhibit higher innovativeness (C. Lee et al., 2018). Utility 

reflects the practical applicability or industrial use of an invention. A common metric 

for utility is the generality index, which measures the breadth of subsequent 

inventions benefiting from the patent (Niosi, 2006). Public procurement patents tend 

to have higher generality (Raiteri, 2018) and patents with greater generality 

demonstrate sustained competitiveness (P.-C. Lee, 2021). 

Application Level emphasizes the quality of the application documents, includ ing 

indicators such as the number of pages, titles, abstracts, claims, and the length of 

claims. Claims delineate the scope of the patent. While a higher number or broader 

scope of claims increases examination complexity and may prolong the review 

process (Liegsalz & Wagner, 2013), research also suggests a positive relationship 

between the number of claims and patent grant. A patent with numerous independent 

claims is perceived as robust in legal terms (Harhoff & Wagner, 2009; Y.-G. Lee & 

Lee, 2010). The word count of the first claim is another commonly used indicator, 

reflecting the patent’s protection scope (Sampat & Williams, 2019). Moreover, 

particular attention is given to Patent Cooperation Treaty (PCT) applications. PCT 

filings, which enable the extension of patent protection to multiple countries while 

minimizing costs and complexities, positively impact patent grant rates (Harhoff & 

Wagner, 2009) 

Applicant and inventor level explores the influence of applicant and inventor 

characteristics, such as quantity, nationality, and historical experience. Analysis of 

USPTO data reveals that U.S. nationality increases the likelihood of patent approval, 

whether as applicants or inventors (Drivas & Kaplanis, 2020). Some patent office’s 

exhibit preferential treatment toward domestic applicants (D. Yang, 2008), leading 

to higher granting probabilities for local inventors. Additionally, in areas of 

technological specialization, domestic inventors show stronger positive effects 

(Webster et al., 2014). However, excessive domestic collaboration may reduce the 

probability of patent grants. In contrast, international collaborations tend to confer 

advantages (Guellec & de la Potterie, 2000). Applicants with prior success in 

securing patents are more likely to achieve subsequent grants (Liegsalz & Wagner, 

2013). Persistent efforts in filing patents also significantly enhance granting 

probabilities (Drivas & Kaplanis, 2020). 

Examiner Level addresses the role of patent offices and examiners. Decisions on 

patent grant are heavily influenced by individual examiners (Lemley & Sampat, 

2012), and examiner biases can distort patent allocation. For instance, examiners 
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may be less likely to grant patents to inventors outside their social group (Desai, 

2019). They also demonstrate a tendency to approve patents for applicants of the 

same gender (Shen & Zingg, n.d.). Examiners’ behaviors are influenced by their 

peers, particularly when in close physical proximity (Frakes & Wasserman, 2021). 

These dynamics underscore the subjective aspects of the patent examination process.  

Other Factors. Additional factors include the technological field, patent application 

strategies, and the number of related patent filings. Comparative analyses of 30 

technological fields reveal significant differences in patent review durations across 

domains (Liegsalz & Wagner, 2013). A Difference- in-Differences (DID) analysis by 

Bekkers demonstrated that increased awareness of earlier related technologies 

among examiners reduces patent grant probabilities (Bekkers et al., 2020). 

 

Table 1. The relevant influencing factors of patent grant. 

Dimension Factors Sources 

Patent level 

Novelty 

Harhoff & Wagner, 2009; Liegsalz & 

Wagner, 2013; C. Lee et al., 2018; G. 

Yang et al., 2023 

Utility 
Niosi, 2006; Raiteri, 2018; P.-C. Lee, 

2021 

Application 

level 

the number of pages of 

application file 
Yao & Ni, 2023 

the number of claims 

Harhoff & Wagner, 2009; Y.-G. Lee 

& Lee, 2010; Liegsalz & Wagner, 

2013; Marco et al., 2019 

the word count of title Yao & Ni, 2023 

the word count of 

abstract 
Yao & Ni, 2023 

the word count of claims 
Marco et al., 2019; Sampat & 

Williams, 2019 

whether submit PCT 

application or not 
Harhoff & Wagner, 2009 

Applicant & 

inventor 

level 

whether local 

applicant/inventor or not 

D. Yang, 2008; Guellec & de la 

Potterie, 2000; Drivas & Kaplanis, 

2020 
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the number of 

applicants/inventors 
C. Lee et al., 2018; Yao & Ni, 2023 

applicant’s experience 
Harhoff & Wagner, 2009; Liegsalz & 

Wagner, 2013 

the nationality of 

applicant 

D. Yang, 2008; Webster et al., 2014; 

Drivas & Kaplanis, 2020 

Examiner 

level 

Examiner 

Lemley & Sampat, 2012; Desai, 

2019; Shen & Zingg, n.d.; Frakes & 

Wasserman, 2021 

the country of prior right 
Guellec & de la Potterie, 2000; Yao & 

Ni, 2023 

The duration of examine Harhoff & Wagner, 2009 

Others 

technological field 
Guellec & de la Potterie, 2000; 

Liegsalz & Wagner, 2013 

the strategy of 

application 
Guellec & de la Potterie, 2000 

the number of relevant 

applications 
Bekkers et al., 2020 

 

Interpretable Machine Learning Research 

Interpretable Machine Learning (IML) seeks to provide insights into machine 

learning models that are understandable to humans. IML encompasses understand ing 

data, the internal structures of models, and interpreting the results produced by these 

models (Allen et al., 2024; Lipton, 2018). The applications of IML span various 

stages of the machine learning pipeline, including the explanation of input data, the 

elucidation of model mechanisms, and the interpretation of output outcomes. 

Explanation techniques in IML can be categorized along three dimensions: intrins ic 

interpretability versus post-hoc interpretability, model-specific explanations versus 

model-agnostic explanations, and global explanations versus local explanations. 

Intrinsic Interpretability vs. Post-hoc Interpretability. Intrinsic interpretability refers 

to the inherent transparency of a model, allowing users to understand its behavior 

directly through the training process. Examples of intrinsically interpretable models 

include decision trees (Costa & Pedreira, 2023), additive models (Agarwal et al., 

2021), and models enhanced with regularization techniques such as sparsity (Hoefler 

et al., 2021) or smoothness (Crawshaw et al., 2022), which naturally provide high 
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levels of interpretability (Rudin, 2019). Recent advancements have further improved 

the intrinsic interpretability of deep neural networks by integrating prototypes or 

specific interpretability constraints into their final layers (Dong et al., 2017). In 

contrast, post-hoc interpretability involves applying additional methods to interpret 

the model or its outputs after the training phase. These methods include feature 

importance scoring based on backpropagation and Local Interpretable Model-

agnostic Explanations (LIME) (Molnar, 2020). LIME, for example, constructs 

simplified surrogate models around specific input points to approximate the behavior 

of complex models, making it applicable to various pre-trained models and providing 

additional insights into their decision-making processes (Molnar, 2020). 

Model-specific Explanations vs. Model-agnostic Explanations. Model-specific 

explanation methods are designed for types of models and do not generalize well 

across different model architectures. Examples include regression coefficients in 

generalized linear models (Rong & Bao-Wen, 2018), feature importance scores in 

tree-based models (Zhou & Liu, 2021), and techniques such as backpropagation or 

layer-wise relevance propagation in deep learning (Zhou & Liu, 2021). Conversely, 

model-agnostic explanation methods are applicable to a wide range of model types, 

offering a unified framework for interpretation. Common model-agnostic methods 

include Shapley values (Fryer et al., 2021),feature permutation (Covert et al., 2021), 

feature masking (J. Dai et al., 2015), and LIME (Molnar, 2020), which provide 

consistent explanatory effects across different models. It is important to note that 

model-specific explanation methods do not necessarily provide intrins ic 

interpretability. For instance, feature importance scores in decision trees and feature 

attribution via backpropagation are model-specific yet fall under post-hoc 

interpretability. Most model-agnostic explanation methods are inherently post-hoc in 

nature. 

Global Explanations vs. Local Explanations. Global explanations aim to reveal the 

overall structure of the model and the general importance of all features. Examples 

include coefficients in linear or additive models, feature importance scores in tree-

based models, and global feature attribution methods, which reflect each feature's 

role in the model's overall predictions. On the other hand, local explanations focus 

on specific inputs or subsets of inputs, providing targeted interpretations. For 

example, LIME and saliency map methods concentrate on individual test instances 

or the significant features of specific observations (Ribeiro et al., 2016). In 

unsupervised learning, local embedding methods such as t-SNE (t-distributed 

Stochastic Neighbor Embedding) (Van der Maaten & Hinton, 2008) and UMAP 

(Uniform Manifold Approximation and Projection) (McInnes et al., 2018) analyze 

data patterns and relationships within specific neighborhoods to explain local data. 

Despite significant advancements in enhancing model transparency, current IML 
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approaches exhibit several limitations. Firstly, there is considerable technica l 

heterogeneity among existing methods, with each approach typically catering to 

specific interpretative needs and lacking generalizability. This fragmentation leads 

to inconsistent explanatory outcomes across different methods, thereby complicat ing 

users' understanding of model behavior. For instance, some methods emphasize 

global feature importance while others focus on local instance explanations ; 

employing multiple methods simultaneously may yield conflicting conclusions. 

Additionally, varying assumptions and focal points among different methods result 

in a lack of unified evaluation standards, undermining the reliability and consistency 

of explanations. Such inconsistencies not only increase the difficulty for users to 

comprehend and trust the models but also risk misleading decision-making processes, 

thereby reducing the practical effectiveness of interpretability techniques. 

Consequently, there is an urgent need to develop more unified and coordinated 

interpretability frameworks to mitigate methodological discrepancies, enhance the 

consistency of explanatory outcomes, and bolster user trust. 

Methodology  

Data collection 

We select patents in the fields of Electronic Communications (EC) for empirica l 

analysis and comparison due to their pivotal roles in driving technological progress 

and economic growth. EC, as a mature and highly competitive sector, presents 

unique challenges in balancing innovation with the standardization of technologies. 

Invention patents are selected for analysis due to their emphasis on groundbreaking 

innovations and their rigorous examination standards. Invention patents are 

emphasized because they represent substantive technological innovations and 

generally possess higher overall market value. Moreover, the examination process 

for invention patents is more rigorous, with clearer and more consistent decision-

making criteria, making them more predictable. Finally, invention patents offer 

higher data quality and richer textual information, making them particularly well-

suited for training patent grant prediction models. The process of obtaining an 

invention patent typically involves several key stages, beginning with the filing of a 

patent application. After filing, the application undergoes a formal examination and 

the substantive examination phases. If approved, the patent is granted and published, 

providing the inventor with exclusive rights to the invention, typically having a 

protection period of up to 20 years. 

The patent examination process generally spans 2 to 5 years, with an average 

duration of approximately 4 years, supporting the selection of a five-year observation 

window. Thus, invention patent applications in 2017 of the EC fields are chosen, 
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enabling an evaluation of whether these patents were successfully granted within 5 

years. Our patent data are collected from PATSTAT (Worldwide Patent Statistica l 

Database) and the final dataset contains 299,912 patent applications (137,257 patents 

are granted). 

Influencing factors extraction and description 

The grant status of a patent is operationalized as a binary variable, where granted 

patents are assigned a value of 1, and non-granted patents are assigned a value of 0. 

This study selects patent features as influencing factors at five levels, and the final 

factors and measurement methods are detailed in Table 2. 

 

Table 2. Influencing factors selected. 

Dimension Factors Measurement 

Patent level 

backward_citation The number of backward citations. 

family_size The family size of focal patent. 

nb_claims The number of claims. 

nb_title_char The word count of patent applications’ title. 

nb_abstr_char 
The word count of patent applications’ 

abstract. 

is_PCT 
Whether the patent is filed as a PCT 

application: 1 for Yes, 0 for No. 

Applicant 

& invento r 

level 

nb_inventors The number of inventors. 

nb_applicants The number of applicants. 

nb_applications 

The total number of patent applications of 

all applicant and inventors of focal patent in 

2017. 

ratio_granted 
The granting rate of the applicant’s patent 

applications in 2016. 

ctry_first_applicant The nationality of the first applicant. 

nb_local_applicant The number of local applicants. 

nb_foreign_applicant The number of foreign applicants. 

nb_local_inventor The number of local inventors. 

nb_foreign_inventor The number of foreign inventors. 

appln_auth 
The examination authority of the focal 

patent. 

Examiner 

level 

int_phase 
Whether the patent entered the internationa l 

phase: Y = 1; N = 0. 

reg_phase Whether the patent entered the regional 
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phase: Y = 1; N = 0. 

nat_phase 
Whether the patent entered the national 

phase: Y = 1; N = 0. 

duration 
The number of years from the initial patent 

application filing to the final decision. 

Others 

tech_field 
The 3_digit IPC code which focal patent 

belongs to. 

nace_code The NACE1 code of focal patent. 

nb_relevant_patent The number of relevant applications2. 

  

Table 3. The patent features’ description. 

Factors Mean SD Factors Mean SD 

backward_citation 7.68 38.39 nb_foreign_applicant 0.90 0.58 

family_size 3.84 4.79 nb_local_inventor 0.45 1.29 

nb_claims 13.26 37.4 nb_foreign_inventor 2.39 2.17 

nb_title_char 8.5 4.24 appln_auth NA NA 

nb_abstr_char 134.64 52.41 int_phase 0.37 0.48 

is_PCT 0.26 0.44 reg_phase 0.08 0.27 

nb_inventors 2.78 2.12 nat_phase 0.81 0.39 

nb_applicants 1.08 0.48 duration 1.73 1.11 

nb_applications 1095.9 1956.03 tech_field NA NA 

ratio_granted 0.47 0.35 nace_code NA NA 

ctry_first_applicant NA NA nb_relevant_patent 0 0.03 

nb_local_applicant 0.20 0.47    

 

Model construction 

This paper proposes an ensemble learning approach based on the ENsemble 

Kolmogorov-Arnold Network (EN-KAN) for predicting patent grant outcomes. The 

proposed method enhances prediction accuracy and model generalization through 

systematic data preprocessing, the design and training of the KAN model, and the 

implementation of an ensemble learning strategy. 

                                                                 
1  NACE: Statistical Classification of Economic Activities in the European Community is the 

statistical classification system of economic activities in the European Union (EU).  
2 Technical relations are "priority-like" relations between applications which have been detected by 

EPO examiners, but which have not been published by a patent office. 
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(a) Base model 

The Ensemble-KAN utilizes the Kolmogorov-Arnold Network (KAN) as the 

foundational model for patent grant prediction. KANs, based on the Kolmogorov-

Arnold theorem, are emerging machine learning architectures recognized as 

powerful alternatives to multilayer perceptrons (MLPs). The KAN network exhibits 

significant advantages over traditional MLPs in several key aspects, particularly in 

weight parameter representation and function approximation methods. 

According to the Kolmogorov-Arnold theorem, for any continuous multivariate real 

function  𝑓: [0,1]𝑛 → 𝑅  , there exists a set of univariate continuous functions  

{𝜙𝑘}   and  {𝜓𝑘 ,𝑖}  such that  𝑓   can be expressed as a finite nested and 

summative form: 

𝑓(𝑥1,𝑥2, … , 𝑥𝑛) = ∑ ϕ𝑘 (∑ ψ𝑘,𝑖(𝑥𝑖)

𝑛

𝑖=1

)

2𝑛+1

𝑘=1

. 

This theorem theoretically demonstrates that multivariate continuous functions can 

be decomposed into a weighted sum of univariate nonlinear functions. Unlike 

traditional MLPs, which employ fully connected linear transformations combined 

with fixed activation functions, KAN networks represent each channel with learnable 

univariate nonlinear functions. This alignment with the Kolmogorov-Arno ld 

decomposition enhances the function representation's conformity to the theorem's 

decomposition principle. 

Specifically, the KAN aims to approximate a target function  𝑓(𝐱) = 𝑓(𝑥1, … , 𝑥𝑛)  

as: 

𝑓(𝑥) = ∑ 𝑔𝑘 (∑ ℎ𝑘,𝑖(𝑥𝑖)

𝑛

𝑖=1

)

𝐾

𝑘=1

, 

where  𝑔𝑘(⋅)   and  ℎ𝑘,𝑖(⋅)   are learnable univariate nonlinear functions. To 

enhance the function space's representation capability, KAN networks incorporate 

learnable B-splines as the base functions, parameterizing both ℎ𝑘,𝑖  and 𝑔𝑘  . For 

example, the B-spline basis functions for ℎ𝑘,𝑖 are expressed as: 

ℎ𝑘,𝑖(𝑥𝑖) = ∑ α𝑘 ,𝑖 ,𝑗𝐵𝑗(𝑥𝑖)

𝐽

𝑗=1

. 

Similarly, for 𝑔𝑘(𝑢): 

𝑔𝑘(𝑢) = ∑ β𝑘,𝑗 𝐵𝑗(𝑢)

𝐽′

𝑗=1

, 

where {α𝑘 ,𝑖,𝑗} and {β𝑘,𝑗} are trainable parameters. The incorporation of learnable 
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B-spline activation functions allows the model to adaptively adjust the univar ia te 

nonlinear mappings during training, thereby shaping the function forms according to 

the data distribution characteristics and enhancing the model's ability to capture 

complex data patterns. 

Furthermore, the univariate learnable nonlinear function structure of the KAN 

network improves model interpretability. Since the function is explicitly decomposed 

into a finite sum of univariate nonlinear functions, it facilitates the analysis of input 

variables' individual contributions to the output, providing more intuit ive 

explanations for the decision-making process in the task. 

(b) ENsemble Kolmogorov-Arnold Network 

In this paper, we propose an ENsemble Kolmogorov-Arnold Network (EN-KAN), by 

centrally training multiple Kolmogorov-Arnold Network (KAN) models and 

generating combined prediction results. EN-KAN mitigates individual model biases, 

significantly enhancing the overall model's generalization capability. The core idea 

is to leverage the diversity of multiple independently trained KAN models and 

integrate their predictions through an ensemble decision mechanism to achieve more 

robust and accurate classification performance.  

Figure 1 illustrates the structure of the proposed EN-KAN. The process begins with 

the data preprocessing stage, which includes three main steps: Data Cleaning, 

Normalization, and Feature Selection. These steps work together to produce a high-

quality training dataset. Once the data is preprocessed, it is fed into the EN-KAN 

module. This module is made up of several KAN. Each KAN network starts by 

fitting an explainable spline function to capture the nonlinear patterns in the data. 

After fitting the spline functions, they are combined to form a complete KAN 

network. During the prediction phase, each individual KAN network makes its own 

prediction based on the input data. These predictions are then collected through a 

voting mechanism, where each KAN network casts a vote for its predicted outcome. 

Finally, the EN-KAN algorithm uses a Model Ensemble process to merge all the 

votes from the KAN networks, resulting in the final output. This structure not only 

enhances the prediction accuracy of the model but also maintains the interpretability 

of the results.  
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Figure 1. A high-level structure of the proposed EN-KAN. 

 

Specifically, let there be 𝑀  independent KAN models, each model 𝑚 

characterized by a unique parameter set 𝜃𝑚 . Due to different initializations and the 

stochastic nature of the training process, the parameter sets 𝜃𝑚  exhibit diversity, 

which is crucial for the ensemble method to improve generalization. 

Formally, for each sample 𝐱𝐢 ∈ 𝐗ts  in the test dataset, each KAN model 𝑚 

generates a prediction probability vector �̂�𝑖

(𝑚)
 as follows: 

�̂�𝑖

(𝑚)
= 𝑓𝑚(𝐱𝐢 ; 𝜃𝑚 ), 

were, �̂�𝑖

(𝑚)
 represents the predicted probabilities of sample 𝐱𝐢 belonging to each 

class by model 𝑚. For each model 𝑚, the predicted class label ŷ𝑖

(𝑚)
 is determined 

by selecting the class with the highest probability: 

�̂�𝑖

(𝑚)
= arg max

𝑐
(�̂�𝑖

(𝑚)
)

𝑐
, 

where 𝑐 denotes the class index. The final ensemble prediction label ŷ𝑖

(ensemble)
 is 

obtained by majority voting among all 𝑀 models: 

�̂�𝑖

(𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒)
= mode({�̂�𝑖

(𝑚)
}𝑚=1

𝑀 ). 

The mode   function returns the class that appears most frequently among the 

predictions of the individual models. By integrating multiple diverse KAN models, 
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Ensemble-KAN (E-KAN) effectively reduces the risk of overfitting inherent in 

single models, thereby enhancing the system's overall generalization capability. 

(c) Model Training 

Ensemble-KAN (E-KAN) optimizes multiple KAN networks collectively. The 

overall training loss 𝐿E-KAN is defined as the sum of the loss functions of all 𝑀 

models: 

𝐿E-KAN = ∑ ℒ𝓂

𝑀

𝑚=1

, 

where ℒ𝓂  represents the loss function of the 𝑚-th KAN model, defined as: 

ℒ𝓂 = −
1

𝑁
∑ [𝑦𝑖 log(�̂�𝑖

(𝑚)
) + (1 − 𝑦𝑖) log(1 − �̂�𝑖

(𝑚)
)]

𝑁

𝑖=1

, 

were, 𝑁 is the number of samples in the training set, 𝑦𝑖 is the true label of the 𝑖-

th sample, and �̂�𝑖

(𝑚)
 is the predicted probability by the 𝑚-th KAN model for the 𝑖-

th sample. Thus, the overall training loss can be expressed as: 

𝐿E-KAN = − ∑ (
1

𝑁
∑ [𝑦𝑖 log(�̂�𝑖

(𝑚)
) + (1 − 𝑦𝑖)log(1 − �̂�𝑖

(𝑚)
)]

𝑁

𝑖=1

)

𝑀

𝑚=1

. 

The objective is to minimize the overall training loss 𝐿E-KAN. By optimizing mult ip le 

Kolmogorov-Arnold networks simultaneously and employing an ensemble decision 

mechanism, Ensemble-KAN (E-KAN) effectively enhances model performance and 

generalization in patent grant prediction tasks, offering a robust and efficient solution. 

Result 

Prediction results 

Table 5 presents a comparison of the performance of our model with other models. 

The primary evaluation metrics include precision (P), recall (R), and F1-score. 

Overall, the EN-KAN, Random Forest, and KNN models demonstrated better 

performance compared to traditional models. EN-KAN model showed best 

performance, with F1-score 0.89.  
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Table 5. Results of different models. 

Model P (%) R (%) F1 (%) 

EN-KAN 0.8946 0.8975 0.8949 

RandForest 0.8643 0.8640 0.8638 

KNN 0.8547 0.8546 0.8544 

LASSO 0.7125 0.7125 0.7117 

Logistics 0.7921 0.7904 0.7894 

 

In the Figure 2, the orange curve represents the ROC curve of the EN-KAN model. 

The EN-KAN, Random Forest, and KNN models showed strong performance, while 

the LASSO model performed the worst. The Random Forest model, through the 

integration of multiple decision trees, effectively handles noise and feature 

correlations within the data, achieving performance comparable to the EN-KAN 

model on the dataset. However, the high performance of Random Forest comes at 

the cost of interpretability, as its results are often considered a “black box.” In 

contrast, EN-KAN strikes an optimal balance between predictive performance and 

interpretability, making it a more suitable choice for applications requiring both 

robust predictions and explainable outcomes. 

 

Figure 2. The ROC curve. 

 

Figure 3 illustrates the trade-off between model interpretability and predictive 

accuracy, helping us understand the relative positions of different machine learning 

models along these two dimensions. The x-axis represents model interpretability, 

with models positioned further to the right being more understandable to humans. 

The y-axis indicates predictive accuracy, with higher positions corresponding to 
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better performance on the patent grant prediction task. Models in the lower right red 

circle are intrinsically interpretable but demonstrate lower predictive accuracy. 

Models in the upper left blue region achieve higher accuracy but require post-hoc 

interpretation methods such as SHAP and LIME to explain their predictions 

(Lundberg & Lee, 2017; Ribeiro et al., 2016). In contrast, models in the upper right 

black region—including the EN-KAN proposed in this study and its base model 

KAN—represent a class of neural network architectures that combine high 

interpretability with strong performance. These models are inherently interpretab le 

and do not rely on external tools for post-hoc explanations. Among them, KAN 

provides the most transparent model structure, although its predictive performance 

is slightly lower than that of Random Forest. After incorporating ensemble learning, 

EN-KAN not only surpasses RF in accuracy but also offers superior interpretability 

compared to other models. The green dashed line in the figure denotes the signal- to-

noise ratio (SNR), with higher values indicating that the model can more effective ly 

capture underlying patterns, leading to improved accuracy. The transition from 

models in the red region to those in the blue region reflects the evolution from 

traditional statistical models to high-performance nonlinear models. While increased 

SNR supports the performance of such complex models, it often comes at the cost of 

reduced interpretability. The EN-KAN model introduced in this study seeks to break 

this trade-off by achieving an optimal balance between interpretability and predictive 

power. 

 

 

Figure 3. Explainability and predicted accuracy of different models. 



335 
 

Which patents are granted? 

For patents in the EC field, the most significant factors are nb_claims, nat_phase, 

and int_phase. Similar to the AI field, the number of claims is the most impactful 

factor among all, far surpassing others. However, a key difference lies in the 

substantial influence of different examination phases on EC patent approvals. This 

may be related to the stronger global nature of EC technologies. For innovators in 

the EC field, participating in international patent examination procedures not only 

enhances the global competitiveness of their technologies but also reduces the risk 

of infringement by meeting international examination standards. Moreover, the 

examination processes at various stages are more standardized and systematic, 

making them critical determinants of patent approval. 

 

 

Figure 3. Feature Importance Analysis for EC Patent Grants . 

 

Specifically, the influence of different factors on patent grants varies. First, filing a 

PCT application, entering the international phase, and having a higher number of 

claims are positive indicators of patent grants. Second, it is observed that for EC 

patents, a larger number of local applicants and inventors is more favorable for patent 

grant. Local innovators are likely to have a better understanding of the local market 

and regulatory environment, enabling them to submit patent applications that align 

more closely with examination requirements. Moreover, the involvement of local 

inventors may signify the practical feasibility and localized value of the 

technological innovation, thereby garnering greater recognition. Interestingly, unlike 

the other two fields, EC patent grants appear to be unrelated to backward citation. A 
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possible explanation is that the EC field is characterized by mature technologies with 

rapid innovation cycles. Innovations in this domain are often driven by new 

application scenarios or cross-disciplinary integration, rather than heavy reliance on 

existing technological foundations. Consequently, examination authorities may 

focus more on the practical utility of the patent rather than its connections to prior 

technologies. 

 

 

Figure 4. The coefficient comparison of influencing factors .  

 

𝑓(𝑛𝑜𝑡 𝑔𝑟𝑎𝑛𝑡𝑒𝑑) = −0.504 ∗ 𝑛𝑏𝑐𝑙𝑎𝑖𝑚𝑠 +  0.502 ∗ 𝑖𝑛𝑡𝑝ℎ𝑎𝑠𝑒 − 0.484 ∗ 𝑖𝑠𝑃𝐶𝑇 +  0.254 ∗ 𝑟𝑒𝑔𝑝ℎ𝑎𝑠𝑒 − 0.223 ∗ 𝑛𝑎𝑡𝑝ℎ𝑎𝑠𝑒

− 0.186 ∗ 𝑎𝑝𝑝𝑙𝑛𝑎𝑢𝑡ℎ +  0.146 ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 0.113 ∗ 𝑛𝑏𝑙𝑜𝑐𝑎𝑙𝑎𝑝𝑝𝑙𝑖 𝑐𝑎𝑛𝑡
− 0.103 ∗ 𝑛𝑏𝑙𝑜𝑐𝑎𝑙𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟

+  0.072 ∗ 𝑛𝑏𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡𝑠 − 0.071 ∗ 𝑛𝑏𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟
+  0.062 ∗ 𝑛𝑏𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑠 − 0.060 ∗ 𝑟𝑎𝑡𝑖𝑜𝑔𝑟𝑎𝑛𝑡𝑒𝑑

− 0.056 ∗ 𝑓𝑎𝑚𝑖𝑙𝑦𝑠𝑖𝑧𝑒 +  0.029 ∗ 𝑐𝑡𝑟𝑦𝑓𝑖𝑟𝑠𝑡𝑎𝑝𝑝𝑙𝑖𝑐𝑎 𝑛𝑡
− 0.022 ∗ 𝑛𝑏𝑓𝑜𝑟𝑒𝑖𝑔 𝑛𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡

+  0.012 ∗ 𝑛𝑏𝑎𝑏𝑠𝑡 𝑟𝑐ℎ𝑎𝑟

− 0.010 ∗ 𝑛𝑏𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡 𝑖𝑜𝑛𝑠 +  0.006 ∗ 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 − 0.003 ∗ 𝑛𝑏𝑟𝑒𝑙𝑒𝑣𝑎𝑛 𝑡𝑝𝑎𝑡𝑒𝑛𝑡
− 0.002 ∗ 𝑡𝑒𝑐ℎ𝑓𝑖𝑒𝑙𝑑

− 0.001 ∗ 𝑛𝑏𝑡𝑖𝑡𝑙𝑒𝑐ℎ𝑎𝑟
+  0.000 ∗ 𝑛𝑎𝑐𝑒𝑐𝑜𝑑𝑒 + 0.776 

Formula 1 

𝑓(𝑔𝑟𝑎𝑛𝑡𝑒𝑑) = −0.877 ∗ intphase +  0.860 ∗ isPCT +  0.847 ∗ nbclaims + 0.456 ∗ natphase − 0.419 ∗ regphase +  0.335

∗ applnauth − 0.237 ∗ duration + 0.189 ∗ nblocalinventor
+  0.188 ∗ nblocalapplicant

+  0.107

∗ familysize +  0.099 ∗ ratiogranted − 0.096 ∗ nbapplicants +  0.087 ∗ nbforeign inventor
− 0.071

∗ ctryfirstapplicant
− 0.070 ∗ nbinventors +  0.027 ∗ nbapplicatio ns + 0.027 ∗ nbforeig napplicant

− 0.022

∗ nbabstrc har
+  0.005 ∗ nbrelevantpatent

+  0.005 ∗ nbtitlechar
+  0.004 ∗ techfield +  0.004

∗ nacecode +  0.001 ∗ backwardcitation − 1.270 

Formula 2 
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Discussion and conclusion 

This study introduces a novel algorithm for patent grant prediction based on the 

Kolmogorov-Arnold Network (EN-KAN), which enhances interpretability while 

maintaining superior performance. Unlike traditional multilayer perceptions, the 

proposed model leverages the Kolmogorov-Arnold theorem to overcome the 

limitations of conventional methods that rely on linear transformations combined 

with activation functions. By allowing the use of nonlinear functions, this approach 

provides a more detailed analysis of the nonlinear impacts of input variables on 

outputs, offering intuitive insights into decision-making processes. To validate the 

proposed model, we collected patent datasets from Electronic Communication fields 

and extracted potential influencing factors at different levels. To further improve the 

predictive performance, ensemble learning strategies were employed to enhance the 

model’s generalization ability. The final trained model consistently outperformed 

traditional machine learning algorithms across multiple datasets, achieving 

performance levels comparable to neural networks. More importantly, the model 

provides feature importance rankings and directly generates equations, offering 

precise explanations for influential factors. 

The findings reveal that the factors influencing patent grant exhibit significant 

consistency across fields, with examination- level and patent-level factors playing 

pivotal roles. Among examination- level factors, the submission of a PCT application 

shows a strong positive correlation with patent grants. This relationship is closely 

tied to the international, national, and regional phases, each of which serves distinct 

purposes in the patenting process. The international phase primarily focuses on 

patentability searches, providing applicants with more time to determine target 

markets. In contrast, the national and regional phases involve substantive reviews to 

secure patent protection in individual jurisdictions or regional organizations. Patent-

level factors also significantly influence granting outcomes, with backward citation 

and the number of claims standing out as critical variables. Backward citation, which 

reflects the foundational knowledge underlying the innovation, is positive ly 

associated with patent grants, corroborating prior studies that link it to patent value 

(Junbyoung Oh & Wonchang Hur, 2018). The number of claims, often considered an 

indicator of patent scope (Novelli, 2015), displays an unexpected positive correlation 

with patent granting probabilities. This finding challenges the conventional view that 

more claims result in stricter examination processes and lower grant rates (Marco et 

al., 2019). Instead, the study aligns with recent research suggesting that the number 

of claims represents not only the scope but also the comprehensiveness and 

innovativeness of a patent, thereby highlighting its potential value  (Kuhn & 

Thompson, 2019; Yao & Ni, 2023). 

This study introduces the EN-KAN model, which combines interpretability with 
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high predictive performance. By leveraging the Kolmogorov-Arnold theorem 

instead of traditional multilayer neural network methods, the model not only 

identifies the key factors influencing patent granting but also provides mathematica l 

formulas with coefficients. This approach addresses the “black box” problem 

inherent in neural network algorithms, further enhancing the interpretability of the 

predictive model. From a practical application perspective, these findings can assist 

innovative entities in optimizing their patent application strategies. Innovators in 

different fields can tailor their patent documentation based on their specific key 

factors, refine their patent portfolios, and significantly improve the likelihood of 

granting. For examination authorities, understanding the critical factors influenc ing 

patent granting enables a more focused review process, enhancing examination 

efficiency and refining patent review rules. Lastly, these conclusions can also guide 

research and market strategies. Considering patent grant factors during the research 

and development phase can facilitate the creation of technologies that are not only 

more patentable but also have higher market potential. 

In summary, this study proposes EN-KAN as a robust tool for patent grant prediction, 

yet two limitations should be noted. First, the dataset used in this study is limited to 

a single technological domain and includes only patents filed in 2017, which may 

raise concerns regarding the generalizability of the findings. Future research could 

expand the scope to include multiple domains and application years to enable 

comparative analysis and enhance the robustness of the results. Additionally, despite 

efforts to include all relevant influencing factors, certain features, such as patent 

filing strategies, could not be incorporated due to data limitations. Future research 

could address this by exploring additional data sources to include a broader range of 

influencing factors. 
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